Part III — Building Planning and Construction

CHAPTER 3 BUILDING PLANNING

SECTION R301 DESIGN CRITERIA

R301.1 Application. Buildings and structures, and all parts thereof, shall be constructed to safely support all loads, including dead loads, live loads, roof loads, flood loads, snow loads, wind loads and seismic loads as prescribed by this code. The construction of buildings and structures in accordance with the provisions of this code shall result in a system that provides a complete load path that meets all requirements for the transfer of all loads from their point of origin through the load-resisting elements to the foundation. Buildings and structures constructed as prescribed by this code are deemed to comply with the requirements of this section.

R301.1.1 Alternative provisions. As an alternative to the requirements in Section R301.1 the following standards are permitted subject to the limitations of this code and the limitations therein. Where engineered design is used in conjunction with these standards the design shall comply with the *International Building Code*.

- 1. American Forest and Paper Association (AF&PA) Wood Frame Construction Manual (WFCM).
- 2. American Iron and Steel Institute (AISI) Standard for Cold-Formed Steel Framing—Prescriptive Method for One- and Two-Family Dwellings (COFS/PM) with Supplement to Standard for Cold-Formed Steel Framing-Prescriptive Method for One- and Two-Family Dwellings.

R301.1.2 Construction systems. The requirements of this code are based on platform and balloon-frame construction for light-frame buildings. The requirements for concrete and masonry buildings are based on a balloon framing system. Other framing systems must have equivalent detailing to ensure force transfer, continuity and compatible deformations.

R301.1.3 Engineered design. When a building of otherwise conventional construction contains structural elements exceeding the limits of Section R301 or otherwise not conforming to this code, these elements shall be designed in accordance with accepted engineering practice. The extent of such design need only demonstrate compliance of nonconventional elements with other applicable provisions and shall be compatible with the performance of the conventional framed system. Engineered design in accordance with the *International Building Code* is permitted for all buildings and structures, and parts thereof, included in the scope of this code.

R301.2 Climatic and geographic design criteria. Buildings shall be constructed in accordance with the provisions of this code as limited by the provisions of this section. Additional cri-

teria shall be established by the local jurisdiction and set forth in Table R301.2(1).

R301.2.1 Wind limitations. Buildings and portions thereof shall be limited by wind speed, as defined in Table R301.2(1) and construction methods in accordance with this code. Basic wind speeds shall be determined from Figure R301.2(4). Where different construction methods and structural materials are used for various portions of a building, the applicable requirements of this section for each portion shall apply. Where loads for wall coverings, curtain walls, roof coverings, exterior windows, skylights, garage doors and exterior doors are not otherwise specified, the loads listed in Table R301.2(2) adjusted for height and exposure using Table R301.2(3) shall be used to determine design load performance requirements for wall coverings, curtain walls, roof coverings, exterior windows, skylights, garage doors and exterior doors. Asphalt shingles shall be designed for wind speeds in accordance with Section R905.2.6. Wind speeds for localities in special wind regions, near mountainous terrain and near gorges shall be based on elevation. Areas at 4,000 feet in elevation or higher shall use 110 V mph (48.4 m/s) and areas under 4,000 feet in elevation shall use 90 V mph (39.6 m/s). Gorge areas shall be based on the highest recorded speed per locality or in accordance with local jurisdiction requirements determined in accordance with Section 6.5.4 of ASCE 7.

R301.2.1.1 Design criteria. Construction in regions where the basic wind speeds from Figure R301.2(4) equal or exceed 110 miles per hour (49 m/s) shall be designed in accordance with one of the following:

- 1. American Forest and Paper Association (AF&PA) Wood Frame Construction Manual for One- and Two-Family Dwellings (WFCM); or
- 2. Southern Building Code Congress International Standard for Hurricane Resistant Residential Construction (SSTD 10); or
- 3. Minimum Design Loads for Buildings and Other Structures (ASCE-7); or
- 4. American Iron and Steel Institute (AISI), Standard for Cold-Formed Steel Framing—Prescriptive Method For One- and Two-Family Dwellings (COFS/PM) with Supplement to Standard for Cold-Formed Steel Framing—Prescriptive Method For One- and Two-Family Dwellings.
- 5. Concrete construction shall be designed in accordance with the provisions of this code.

TABLE R301.2(1) CLIMATIC AND GEOGRAPHIC DESIGN CRITERIA

	GROUND	WIND	SEISMIC	SUBJECT	TO DAMAG	E FROM	WINTER	ICE BARRIER		AIR	MEAN
	SNOW	SPEED ^d (mph)	DESIGN	Weathering ^a	Frost line depth ^b	Termite ^c	DESIGN		FLOOD HAZARDS ^g	FREEZING INDEX ⁱ	ANNUAL TEMP ^j
ł	LOAD	(inpii)	CATEGOIN	weathering	uepiii	Termite		HEGOINED	HAZANDO		

For SI: 1 pound per square foot = 0.0479 kPa, 1 mile per hour = 0.447 m/s.

- a. Weathering may require a higher strength concrete or grade of masonry than necessary to satisfy the structural requirements of this code. The weathering column shall be filled in with the weathering index (i.e., "negligible," "moderate" or "severe") for concrete as determined from the Weathering Probability Map [Figure R301.2(3)]. The grade of masonry units shall be determined from ASTM C 34, C 55, C 62, C 73, C 90, C 129, C 145, C 216 or C 652.
- b. The frost line depth may require deeper footings than indicated in Figure R403.1(1). The jurisdiction shall fill in the frost line depth column with the minimum depth of footing below finish grade.
- c. The jurisdiction shall fill in this part of the table to indicate the need for protection depending on whether there has been a history of local subterranean termite damage.
- d. The jurisdiction shall fill in this part of the table with the wind speed from the basic wind speed map [FigureR301.2(4)]. Wind exposure category shall be determined on a site-specific basis in accordance with Section R301.2.1.4.
- e. The outdoor design dry-bulb temperature shall be selected from the columns of 97¹/₂-percent values for winter from Appendix D of the *International Plumbing Code*. Deviations from the Appendix D temperatures shall be permitted to reflect local climates or local weather experience as determined by the building official.
 f. The jurisdiction shall fill in this part of the table with the seismic design category determined from Section R301.2.2.1.
- g. The jurisdiction shall fill in this part of the table with (a) the date of the jurisdiction's entry into the National Flood Insurance Program (date of adoption of the first code or ordinance for management of flood hazard areas), (b) the date(s) of the currently effective FIRM and FBFM, or other flood hazard map adopted by the community, as may be amended.
- h. In accordance with Sections R905.2.7.1, R905.4.3.1, R905.5.3.1, R905.6.3.1, R905.7.3.1 and R905.8.3.1, where there has been a history of local damage from the effects of ice damming, the jurisdiction shall fill in this part of the table with "YES". Otherwise, the jurisdiction shall fill in this part of the table with "NO".
- i. The jurisdiction shall fill in this part of the table with the 100-year return period air freezing index (BF-days) from Figure R403.3(2) or from the 100-year (99%) value on the National Climatic Data Center data table "Air Freezing Index- USA Method (Base 32°Fahrenheit)" at www.ncdc.noaa.gov/fpsf.html.
- j. The jurisdiction shall fill in this part of the table with the mean annual temperature from the National Climatic Data Center data table "Air Freezing Index-USA Method (Base 32°Fahrenheit)" at www.ncdc.noaa.gov/fpsf.html.

		EFFECTIVE	BASIC WIND SPEED (mph—3-second gust)												
		WIND									Ū				
	ZONE	AREA (feet ²)	85	90	100	105	110	120	1	25	130	140	145	150	170
	1	10	10.0 -13.0	10.0 -14.6	10.0 -18.0	10.0 -19.8	10.0 -21.8	10.5 -2	5.9 11.4	-28.1	12.4 -30.4	4 14.3 -35.3	15.4 -37.8	16.5 -40.5	21.1 -52.0
	1	20	10.0 -12.7	10.0 -14.2	10.0 -17.5	10.0 -19.3	10.0 -21.2	10.0 -2	5.2 10.7	-27.4	11.6 -29.6	5 13.4 -34.4	14.4 -36.9	15.4 -39.4	19.8 -50.7
ses	1	50	10.0 -12.2	10.0 -13.7	10.0 -16.9	10.0 -18.7	10.0 -20.5	10.0 -2	4.4 10.0	-26.4	10.6 -28.6	5 12.3 -33.2	13.1 -35.6	14.1 -38.1	18.1 -48.9
egr	1	100	10.0 -11.9	10.0 -13.3	10.0 -18.5	10.0 -18.2	10.0 -19.9	10.0 -2	3.7 10.0	-25.7	10.0 -27.8	3 11.4 -32.3	12.2 -34.6	13.0 -37.0	16.7 -47.6
0 q	2	10	10.0 -21.8			10.0 -33.3			3.5 11.4) 14.3 -59.2		16.5 -67.9	21.1 -87.2
Q	2	20	10.0 -19.5						8.8 10.7			5 13.4 -52.9		15.4 -60.7	19.8 -78.0
0 ^	2	50	10.0 -16.4						2.7 10.0			12.3 -44.5		14.1 -51.1	18.1 -65.7
Roof > 0 to 10 degrees	2	100	10.0 -14.1	10.0 -15.8					8.1 10.0					13.0 -43.9	16.7 -56.4
~	3	100	10.0 -32.8		10.0 -45.4		10.0 -55.0		5.4 11.4	-71.0		3 14.3 -89.0		16.5 -102.2	21.1 -131.3
	3	20	10.0 -27.2		10.0 -37.6		10.0 -45.5		4.2 10.7			5 13.4 -73.8		15.4 -84.7	19.8 -108.7
	3	50	10.0 -19.7		10.0 -27.3				9.3 10.0			2 12.3 -53.5		14.1 -61.5	18.1 -78.9
	3	100	10.0 -19.7	10.0 -15.8			10.0 -23.6		8.1 10.0			11.4 - 38.2		13.0 -43.9	16.7 -56.4
	1	100	10.0 -14.1				12.5 -19.9		3.7 16.2		17.5 -27.8			23.3 -37.0	30.0 -47.6
es	1	20	10.0 -11.6				11.4 -19.4 10.0 -18.6				16.0 -27.0			21.3 -36.0	27.3 -46.3
degrees		50	10.0 -11.1								13.9 -26.0 12.4 -25.2			18.5 -34.6	23.8 -44.5
ğ	1	100	10.0 -10.8				10.0 -18.1							16.5 -33.6	
> 10 to 30	2	10	10.0 -25.1				12.5 -42.1				17.5 -58.7			23.3 -78.2	30.0 -100.5
P	2	20	10.0 -22.8			10.4 -34.8			5.4 14.8			16.1 52.6		21.3 -71.0	27.3 -91.2
÷	2	50	10.0 -19.7		10.0 -27.3		10.0 -33.0		9.3 12.9					18.5 -61.4	23.8 -78.9
Roof	2	100	10.0 -17.4				10.0 -29.1		4.7 11.4			14.3 -47.2		16.5 -54.2	21.1 -69.6
	3	10	10.0 -25.1	10.0 -28.2			12.5 -42.1		0.1 16.2		17.5 -58.7			23.3 -78.2	30.0 -100.5
	3	20	10.0 -22.8			10.4 -34.8			5.4 14.8			8 18.5 -61.8		21.3 -71.0	27.3 -91.2
	3	50	10.0 -19.7				10.0 -33.0		9.3 12.9					18.5 -61.4	
	3	100	10.0 -17.4						4.7 11.4					16.5 -54.2	21.1 -69.6
	1	10	11.9 -13.0			18.2 -19.8			5.9 25.7					37.0 -40.5	47.6 -52.0
s	1	20	11.6 -12.3						4.6 25.0			31.4 -33.5		36.0 -38.4	46.3 -49.3
degrees	1	50	11.1 -11.5		15.4 -15.9				2.8 24.1	-24.8		30.2 -31.1		34.6 -35.7	44.5 -45.8
	1	100	10.8 -10.8		14.9 -14.9				1.5 23.3	-23.3				33.6 -33.6	43.2 -43.2
0 45	2	10	11.9 -15.2						0.3 25.7			5 32.3 -41.2		37.0 -47.3	47.6 -60.8
30 to	2	20	11.6 -14.5	13.0 -16.3	16.0 -20.1	17.6 -22.2			9.0 25.0			31.4 -39.4		36.0 -45.3	46.3 -58.1
Roof >	2	50	11.1 -13.7	12.5 -15.3	15.4 -18.9	17.0 -20.8	18.6 -22.9	22.2 -2	27.2 24.1	-29.5	26.0 -32.0	30.2 -37.1	32.4 -39.8	34.6 -42.5	44.5 -54.6
Bo	2	100	10.8 -13.0	12.1 -14.6	14.9 -18.0	16.5 -19.8	18.1 -21.8	21.5 -2	25.9 23.3	-28.1	25.2 -30.4	29.3 -35.3	31.4 -37.8	33.6 -40.5	43.2 -52.0
	3	10	11.9 -15.2				19.9 -25.5					5 32.3 -41.2		37.0 -47.3	
	3	20												36.0 -45.3	
	3	50												34.6 -42.5	
	3	100												33.6 -40.5	
	4	10	13.0 -14.1										37.8 -41.0		52.0 -56.4
	4	20											36.1 -39.3		49.6 -54.1
	4	50											33.9 -37.1		46.6 -51.0
Wall	4	100											32.2 -35.4		44.2 -48.6
5	5	10							-	-			37.8 -50.6		52.0 -69.6
	5	20											36.1 -47.2		49.6 -64.9
	5	50	11.6 -14.7	13.0 -16.5	16.1 -20.3	17.8 -22.4	19.5 -24.6	23.2 -2	9.3 25.2	-31.8	27.2 -34.3	31.6 -39.8	33.9 -42.7	36.2 -45.7	46.6 -58.7
	5	100	11.1 -13.5	12.4 -15.1	15.3 -18.7	16.9 -20.6	18.5 -22.6	22.0 -2	6.9 23.9	-29.2	25.9 -31.6	5 30.0 -36.7	32.2 -39.3	34.4 -42.1	44.2 -54.1

TABLE R301.2(2) COMPONENT AND CLADDING LOADS FOR A BUILDING WITH A MEAN ROOF HEIGHT OF 30 FEET LOCATED IN EXPOSURE B (psf)

For SI: 1 foot = 304.8 mm, 1 square foot = 0.0929 m^2 , 1 mile per hour = 0.447 m/s.

NOTES: For effective areas between those given above the load may be interpolated, otherwise use the load associated with the lower effective area. Table values shall be adjusted for height and exposure by multiplying by the adjustment coefficient in Table R301.2(3).

See Figure R301.2(7) for location of zones.

Plus and minus signs signify pressures acting toward and away from the building surfaces.

			()
MEAN		EXPOSURE	
ROOF HEIGHT	В	с	D
15	1.00	1.21	1.47
20	1.00	1.29	1.55
25	1.00	1.35	1.61
30	1.00	1.40	1.66
35	1.05	1.45	1.70
40	1.09	1.49	1.74
45	1.12	1.53	1.78
50	1.16	1.56	1.81
55	1.19	1.59	1.84
60	1.22	1.62	1.87

 TABLE R301.2(3)

 HEIGHT AND EXPOSURE ADJUSTMENT COEFFICIENTS FOR TABLE R301.2(2)

DESIGN TEMPERATURES IN THIS AREA MUST BE BASED ON ANALYSIS OF LOCAL CLIMATE AND TOPOGRAPHY

For SI: $^{\circ}C = [(^{\circ}F)-32]/1.8$.

FIGURE R301.2(1) ISOLINES OF THE 97¹/₂ PERCENT WINTER (DECEMBER, JANUARY AND FEBRUARY) DESIGN TEMPERATURES (°F)

(continued)

FIGURE R301.2(2)—continued SEISMIC DESIGN CATEGORIES—SITE CLASS D

(continued)

For SI: 1 mile = 1.61 km.

FIGURE R301.2(2)—continued SEISMIC DESIGN CATEGORIES—SITE CLASS D

(continued)

FIGURE R301.2(3) WEATHERING PROBABILITY MAP FOR CONCRETE

a. Alaska and Hawaii are classified as severe and negligible, respectively.
 b. Lines defining areas are approximate only. Local conditions may be more or less severe than indicated by region classification. A severe classification is where weather conditions result in significant snowfall combined with extended periods during which there is little or no natural thawing causing deicing salts to be used extensively.

(continued)

For SI: 1 foot = 304.8 mm, 1 mile per hour = 0.447 m/s.

a. Values are nominal design 3-second gust wind speeds in miles per hour at 33 feet above ground for Exposure C category.

b. Linear interpolation between wind contours is permitted.

c. Islands and coastal areas outside the last contour shall use the last wind speed contour of the coastal area.

d. Mountainous terrain, gorges, ocean promontories and special wind regions shall be examined for unusual wind conditions.

e. Enlarged view of Eastern and Southern seaboards are on the following pages.

(continued)

For SI: 1 foot = 304.8 mm, 1 mile per hour = 0.447 m/s.

a. Values are nominal design 3-second gust wind speeds in miles per hour at 33 feet above ground for Exposure C category.

b. Linear interpolation between wind contours is permitted.

c. Islands and coastal areas outside the last contour shall use the last wind speed contour of the coastal area.

d. Mountainous terrain, gorges, ocean promontories and special wind regions shall be examined for unusual wind conditions.

e. Enlarged view of Eastern and Southern seaboards are on the following pages.

(continued)

For SI: 1 foot = 304.8 mm, 1 mile per hour = 0.447 m/s.

a. Values are nominal design 3-second gust wind speeds in miles per hour at 33 feet above ground for Exposure C category.

b. Linear interpolation between wind contours is permitted.

c. Islands and coastal areas outside the last contour shall use the last wind speed contour of the coastal area.

d. Mountainous terrain, gorges, ocean promontories and special wind regions shall be examined for unusual wind conditions.

(continued)

For SI: 1 foot = 304.8 mm, 1 mile per hour = 0.447 m/s.

a. Values are nominal design 3-second gust wind speeds in miles per hour at 33 feet above ground for Exposure C category.

b. Linear interpolation between wind contours is permitted.

c. Islands and coastal areas outside the last contour shall use the last wind speed contour of the coastal area.

d. Mountainous terrain, gorges, ocean promontories and special wind regions shall be examined for unusual wind conditions.

For SI: 1 foot = 304.8 mm, 1 mile per hour = 0.447 m/s.

a. Values are nominal design 3-second gust wind speeds in miles per hour at 33 feet above ground for Exposure C category.

b. Linear interpolation between wind contours is permitted.

c. Islands and coastal areas outside the last contour shall use the last wind speed contour of the coastal area.

d. Mountainous terrain, gorges, ocean promontories and special wind regions shall be examined for unusual wind conditions.

FIGURE R301.2(5) GROUND SNOW LOADS, P_g , FOR THE UNITED STATES (Ib/ft²)

(continued)

For SI: 1 foot = 304.8 mm, 1 pound per square foot = 0.0479 kPa.

FIGURE R301.2(5)—continued GROUND SNOW LOADS, P_g , FOR THE UNITED STATES (Ib/ft²)

FIGURE R301.2(6) TERMITE INFESTATION PROBABILITY MAP

NOTE: Lines defining areas are approximate only. Local conditions may be more or less severe than indicated by the region classification.

For SI: 1 foot = 304.8 mm, 1 degree = 0.0175 rad. NOTE: a = 4 feet in all cases.

FIGURE R301.2(7) COMPONENT AND CLADDING PRESSURE ZONES

R301.2.1.2 Protection of openings. Windows in buildings located in windborne debris regions shall have glazed openings protected from windborne debris. Glazed opening protection for windborne debris shall meet the requirements of the Large Missile Test of an approved impact resisting standard or ASTM E 1996 and ASTM E 1886 referenced therein.

Exception: Wood structural panels with a minimum of $7/_{16}$ inch (11 mm) and a maximum span of 8 feet (2438 mm) shall be permitted for opening protection in one- and two-story buildings. Panels shall be precut

so that they shall be attached to the framing surrounding the opening containing the product with the glazed opening. Panels shall be secured with the attachment hardware provided. Attachments shall be designed to resist the component and cladding loads determined in accordance with either Table R301.2(2) or Section 1609.6.5 of the *International Building Code*. Attachment in accordance with Table R301.2.1.2 is permitted for buildings with a mean roof height of 33 feet (10 058 mm) or less where wind speeds do not exceed 130 miles per hour (58 m/s).

	FASTENER SPACING (inches)							
FASTENER TYPE	Panel span ≤ 4 feet	4 feet < panel span ≤ 6 feet	6 feet < panel span ≤ 8 feet					
No. 6 Screws	16″	12″	9″					
No. 8 Screws	16″	16″	12″					

TABLE R301.2.1.2 WINDBORNE DEBRIS PROTECTION FASTENING SCHEDULE FOR WOOD STRUCTURAL PANELS^{a, b, c, d}

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound = 4.448N, 1 mile per hour = 0.447 m/s.

- a. This table is based on 130 mph wind speeds and a 33-foot mean roof height.
- b. Fasteners shall be installed at opposing ends of the wood structural panel. Fasteners shall be located a minimum of 1 inch from the edge of the panel.
- c. Fasteners shall be long enough to penetrate through the exterior wall covering and a minimum of $1^{1}/_{4}$ inches into wood wall framing and a minimum of $1^{1}/_{4}$ inches into concrete block or concrete, and into steel framing a minimum of three exposed threads. Fasteners shall be located a minimum of $2^{1}/_{2}$ inches from the edge of concrete block or concrete.
- Where screws are attached to masonry or masonry/stucco, they shall be attached using vibration-resistant anchors having a minimum ultimate withdrawal capacity of 490 pounds.

R301.2.1.3 Wind speed conversion. When referenced documents are based on fastest mile wind speeds, the three-second gust basic wind speeds, V_{3s} , of Figure R301.2(4) shall be converted to fastest mile wind speeds, V_{fm} , using Table R301.2.1.3.

R301.2.1.4 Exposure category. For each wind direction considered, an exposure category that adequately reflects the characteristics of ground surface irregularities shall be determined for the site at which the building or structure is to be constructed. For a site located in the transition zone between categories, the category resulting in the largest wind forces shall apply. Account shall be taken of variations in ground surface roughness that arise from natural topography and vegetation as well as from constructed features. For any given wind direction, the exposure in which a specific building or other structure is sited shall be assessed as being one of the following categories:

1. Exposure A. Large city centers with at least 50 percent of the buildings having a height in excess of 70 feet (21 336 mm). Use of this exposure category shall be limited to those areas for which terrain representative of Exposure A prevails in the upwind direction for a distance of at least 0.5 mile (0.8 km) or 10 times the height of the building or other structure, whichever is greater. Possible channeling effects or increased velocity pressures due to the building or structure being located in the wake of adjacent buildings shall be taken into account.

- 2. Exposure B. Urban and suburban areas, wooded areas, or other terrain with numerous closely spaced obstructions having the size of single-family dwellings or larger. Exposure B shall be assumed unless the site meets the definition of another type exposure
- 3. Exposure C. Open terrain with scattered obstructions, including surface undulations or other irregularities, having heights generally less than 30 feet (9144 mm) extending more than 1.500 feet (457 m) from the building site in any quadrant. This exposure shall also apply to any building located within Exposure B type terrain where the building is directly adjacent to open areas of Exposure C type terrain in any quadrant for a distance of more than 600 feet (183 m). This category includes flat open country, grasslands and shorelines in hurricane prone regions.
- 4. Exposure D. Flat, unobstructed areas exposed to wind flowing over open water (excluding shorelines in hurricane prone regions) for a distance of at least 1 mile (1.61 km). Shorelines in Exposure D include inland waterways, the Great Lakes and coastal areas of California, Oregon, Washington and Alaska. This exposure shall apply only to those buildings and other structures exposed to the wind coming from over the water. Exposure D extends inland from the shoreline a distance of 1,500 feet (457 m) or 10 times the height of the building or structure, whichever is greater.

R301.2.2 Seismic provisions. The seismic provisions of this code shall apply to buildings constructed in Seismic Design Categories C, D_0 , D_1 and D_2 , as determined in accordance with this section. Buildings in Seismic Design Category E shall be designed in accordance with the International Building Code, except when the seismic design category is reclassified to a lower seismic design category in accordance with Section R301.2.2.1.

Exception: Detached one- and two-family dwellings located in Seismic Design Category C are exempt from the seismic requirements of this code.

The weight and irregularity limitations of Section R301.2.2.2 shall apply to buildings in all seismic design categories regulated by the seismic provisions of this code. Buildings in Seismic Design Category C shall be constructed in accordance with the additional requirements of Section R301.2.2.3. Buildings in Seismic Design Categories D_0 , D_1 and D_2 shall be constructed in accordance with the additional requirements of Section R301.2.2.4.

TABLE R301.2.1.3 EQUIVALENT BASIC WIND SPEEDS^a

3-second gust, V _{3s}	85	90	100	105	110	120	125	130	140	145	150	160	170
Fastest mile, V _{fm}	71	76	85	90	95	104	109	114	123	128	133	142	152

For SI: 1 mile per hour = 0.447 m/s.

a. Linear interpolation is permitted.

R301.2.2.1 Determination of seismic design category. Buildings shall be assigned a seismic design category in accordance with Figure 301.2(2).

R301.2.2.1.1 Alternate determination of seismic design category. The Seismic Design Categories and corresponding Short Period Design Spectral Response Accelerations, S_{DS} , shown in Figure R301.2(2) are based on soil Site Class D, as defined in Section 1615.1.1 of the International Building Code. If soil conditions are other than Site Class D, the Short Period Design Spectral Response Acceleration, S_{DS} , for a site can be determined according to Section 1615.1 of the International Building Code. The value of S_{DS} determined according to Section 1615.1 of the International Building Code is permitted to be used to set the seismic design category according to Table R301.2.2.1.1, and to interpolate between values in Tables R602.10.1, R603.7, and other seismic design requirements of this code.

TABLE R301.2.2.1.1 SEISMIC DESIGN CATEGORY DETERMINATION

CALCULATED S _{DS}	SEISMIC DESIGN CATEGORY
$S_{DS} \le 0.17 \mathrm{g}$	А
$0.17g < S_{DS} \le 0.33g$	В
$0.33g < S_{DS} \le 0.50g$	С
$0.50g < S_{DS} \le 0.67g$	D ₀
$0.67g < S_{DS} \le 0.83g$	D ₁
$0.83g < S_{DS} \le 1.17g$	D ₂
$1.17g < S_{DS}$	Е

R301.2.2.1.2 Alternative determination of Seismic Design Category E. Buildings located in Seismic Design Category E in accordance with Figure R301.2(2) are permitted to be reclassified as being in Seismic Design Category D_2 provided one of the following is done:

- 1. A more detailed evaluation of the seismic design category is made in accordance with the provisions and maps of the *International Building Code*. Buildings located in Seismic Design Category E per Table R301.2.2.1.1, but located in Seismic Design Category D per the *International Building Code*, may be designed using the Seismic Design Category D₂ requirements of this code.
- 2. Buildings located in Seismic Design Category E that conform to the following additional restrictions are permitted to be constructed in accordance with the provisions for Seismic Design Category D₂ of this code:
 - 2.1. All exterior shear wall lines or braced wall panels are in one plane vertically from the foundation to the uppermost story.

- 2.2. Floors shall not cantilever past the exterior walls.
- 2.3. The building is within all of the requirements of Section R301.2.2.2.2 for being considered as regular.

R301.2.2.2 Seismic limitations. The following limitations apply to buildings in all Seismic Design Categories regulated by the seismic provisions of this code.

R301.2.2.2.1 Weights of materials. Average dead loads shall not exceed 15 pounds per square foot (720 Pa) for the combined roof and ceiling assemblies (on a horizontal projection) or 10 pounds per square foot (480 Pa) for floor assemblies, except as further limited by Section R301.2.2. Dead loads for walls above grade shall not exceed:

- 1. Fifteen pounds per square foot (720 Pa) for exterior light-frame wood walls.
- 2. Fourteen pounds per square foot (670 Pa) for exterior light-frame cold-formed steel walls.
- 3. Ten pounds per square foot (480 Pa) for interior light-frame wood walls.
- 4. Five pounds per square foot (240 Pa) for interior light-frame cold-formed steel walls.
- 5. Eighty pounds per square foot (3830 Pa) for 8-inch-thick (203 mm) masonry walls.
- 6. Eighty-five pounds per square foot (4070 Pa) for 6-inch-thick (152 mm) concrete walls.

Exceptions:

- 1. Roof and ceiling dead loads not exceeding 25 pounds per square foot (1190 Pa) shall be permitted provided the wall bracing amounts in Chapter 6 are increased in accordance with Table R301.2.2.2.1.
- 2. Light-frame walls with stone or masonry veneer shall be permitted in accordance with the provisions of Sections R702.1 and R703.
- 3. Fireplaces and chimneys shall be permitted in accordance with Chapter 10.

TABLE R301.2.2.2.1 WALL BRACING ADJUSTMENT FACTORS BY ROOF COVERING DEAD LOAD^a

	ROOF/CEILING DEAD LOAD	ROOF/CEILING DEAD LOAD
WALL SUPPORTING	15 psf or less	25 psf
Roof only	1.0	1.2
Roof plus one story	1.0	1.1

For SI: 1 pound per square foot = 0.049 kPa.

a. Linear interpolation shall be permitted.

R301.2.2.2.2 Irregular buildings. Prescriptive construction as regulated by this code shall not be used for irregular structures located in Seismic Design Categories C, D_0 , D_1 and D_2 . Irregular portions of structures shall be designed in accordance with accepted engineering practice to the extent the irregular features affect the performance of the remaining structural system. When the forces associated with the irregularity are resisted by a structural system designed in accordance with accepted engineering practice, design of the remainder of the building shall be permitted using the provisions of this code. A building or portion of a building shall be considered to be irregular when one or more of the following conditions occur:

1. When exterior shear wall lines or braced wall panels are not in one plane vertically from the foundation to the uppermost story in which they are required.

> **Exception:** For wood light-frame construction, floors with cantilevers or setbacks not exceeding four times the nominal depth of the wood floor joists are permitted to support braced wall panels that are out of plane with braced wall panels below provided that:

- 1. Floor joists are nominal 2 inches by 10 inches (51 mm by 254 mm) or larger and spaced not more than 16 inches (406 mm) on center.
- 2. The ratio of the back span to the cantilever is at least 2 to 1.
- 3. Floor joists at ends of braced wall panels are doubled.
- 4. For wood-frame construction, a continuous rim joist is connected to ends of all cantilever joists. When spliced, the rim joists shall be spliced using a galvanized metal tie not less than 0.058 inch (1.5 mm) (16 gage) and $1^{1}/_{2}$ inches (38 mm) wide fastened with six 16d nails on each side of the splice or a block of the same size as the rim joist of sufficient length to fit securely between the joist space at which the splice occurs fastened with eight 16d nails on each side of the splice; and
- 5. Gravity loads carried at the end of cantilevered joists are limited to uniform wall and roof loads and the reactions from headers having a span of 8 feet (2438 mm) or less.
- 2. When a section of floor or roof is not laterally supported by shear walls or braced wall lines on all edges.

Exception: Portions of floors that do not support shear walls or braced wall panels above, or roofs, shall be permitted to extend no more than 6 feet (1829 mm) beyond a shear wall or braced wall line.

3. When the end of a braced wall panel occurs over an opening in the wall below and ends at a horizontal distance greater than 1 foot (305 mm) from the edge of the opening. This provision is applicable to shear walls and braced wall panels offset in plane and to braced wall panels offset out of plane as permitted by the exception to Item 1 above.

Exception: For wood light-frame wall construction, one end of a braced wall panel shall be permitted to extend more than 1 foot (305 mm) over an opening not more than 8 feet (2438 mm) wide in the wall below provided that the opening includes a header in accordance with the following:

- 1. The building width, loading condition and framing member species limitations of Table R502.5(1) shall apply and
- 2. Not less than one 2×12 or two 2×10 for an opening not more than 4 feet (1219 mm) wide or
- 3. Not less than two 2×12 or three 2×10 for an opening not more than 6 feet (1829 mm) wide or
- 4. Not less than three 2×12 or four 2×10 for an opening not more than 8 feet (2438 mm) wide and
- 5. The entire length of the braced wall panel does not occur over an opening in the wall below.
- 4. When an opening in a floor or roof exceeds the lesser of 12 feet (3657 mm) or 50 percent of the least floor or roof dimension.
- 5. When portions of a floor level are vertically offset.

Exceptions:

- 1. Framing supported directly by continuous foundations at the perimeter of the building.
- 2. For wood light-frame construction, floors shall be permitted to be vertically offset when the floor framing is lapped or tied together as required by Section R502.6.1.
- 6. When shear walls and braced wall lines do not occur in two perpendicular directions.
- 7. When stories above-grade partially or completely braced by wood wall framing in accordance with Section R602 or steel wall framing in accordance with Section R603 include masonry or concrete construction.

Exception: Fireplaces, chimneys and masonry veneer as permitted by this code.

When this irregularity applies, the entire story shall be designed in accordance with accepted engineering practice.

R301.2.2.3 Seismic Design Category C. Structures assigned to Seismic Design Category C shall conform to the requirements of this section.

R301.2.2.3.1 Stone and masonry veneer. Stone and masonry veneer shall comply with the requirements of Sections R702.1 and R703.

R301.2.2.3.2 Masonry construction. Masonry construction shall comply with the requirements of Section R606.11.2.

R301.2.2.3.3 Concrete construction. Concrete construction shall comply with the requirements of Section R611 or R612.

R301.2.2.4 Seismic Design Categories D_0 , D_1 and D_2 . Structures assigned to Seismic Design Categories D_0 , D_1 and D_2 shall conform to the requirements for Seismic Design Category C and the additional requirements of this section.

R301.2.2.4.1 Height limitations. Wood framed buildings shall be limited to three stories above grade or the limits given in Table R602.10.1. Cold-formed steel framed buildings shall be limited to two stories above grade in accordance with COFS/PM. Mezzanines as defined in Section 202 shall not be considered as stories.

R301.2.2.4.2 Stone and masonry veneer. Stone and masonry veneer shall comply with the requirements of Sections R702.1 and R703.

R301.2.2.4.3 Masonry construction. Masonry construction in Seismic Design Categories D_0 and D_1 shall comply with the requirements of Section R606.11.3. Masonry construction in Seismic Design Category D_2 shall comply with the requirements of Section R606.11.4.

R301.2.2.4.4 Concrete construction. Buildings with above-grade concrete walls shall be in accordance with Section R611, R612, or designed in accordance with accepted engineering practice.

R301.2.2.4.5 Cold-formed steel framing in Seismic Design Categories D_0 , D_1 and D_2 . In Seismic Design Categories D_0 , D_1 and D_2 in addition to the requirements of this code, cold-formed steel framing shall comply with the requirements of COFS/PM.

R301.2.3 Snow loads. Wood framed construction, coldformed steel framed construction and masonry and concrete construction in regions with ground snow loads 70 pounds per square foot (3.35 kPa) or less shall be in accordance with Chapters 5, 6 and 8. Buildings in regions with ground snow loads greater than 70 pounds per square foot (3.35 kPa) shall be designed in accordance with accepted engineering practice.

R301.2.4 Floodplain construction. Buildings and structures constructed in whole or in part in flood hazard areas

(including A or V Zones) as established in Table R301.2(1) shall be designed and constructed in accordance with Section R324.

Exception: Buildings and structures located in whole or in part in identified floodways as established in Table R301.2(1) shall be designed and constructed as stipulated in the *International Building Code*.

R301.3 Story height. Buildings constructed in accordance with these provisions shall be limited to story heights of not more than the following:

1. For wood wall framing, the laterally unsupported bearing wall stud height permitted by Table R602.3(5) plus a height of floor framing not to exceed 16 inches.

Exception: For wood framed wall buildings with bracing in accordance with Table R602.10.1, the wall stud clear height used to determine the maximum permitted story height may be increased to 12 feet without requiring an engineered design for the building wind and seismic force resisting systems provided that the length of bracing required by Table R602.10.1 is increased by multiplying by a factor of 1.20. Wall studs are still subject to the requirements of this section.

- 2. For steel wall framing, a stud height of 10 feet, plus a height of floor framing not to exceed 16 inches.
- 3. For masonry walls, a maximum bearing wall clear height of 12 feet plus a height of floor framing not to exceed 16 inches.

Exception: An additional 8 feet is permitted for gable end walls.

4. For insulating concrete form walls, the maximum bearing wall height per story as permitted by Section 611 tables plus a height of floor framing not to exceed 16 inches.

Individual walls or walls studs shall be permitted to exceed these limits as permitted by Chapter 6 provisions, provided story heights are not exceeded. An engineered design shall be provided for the wall or wall framing members when they exceed the limits of Chapter 6. Where the story height limits are exceeded, an engineered design shall be provided in accordance with the *International Building Code* for the overall wind and seismic force resisting systems.

R301.4 Dead load. The actual weights of materials and construction shall be used for determining dead load with consideration for the dead load of fixed service equipment.

R301.5 Live load. The minimum uniformly distributed live load shall be as provided in Table R301.5.

R301.6 Roof load. The roof shall be designed for the live load indicated in Table R301.6 or the snow load indicated in Table R301.2(1), whichever is greater.

R301.7 Deflection. The allowable deflection of any structural member under the live load listed in Sections R301.5 and R301.6 shall not exceed the values in Table R301.7.

TABLE R301.5 MINIMUM UNIFORMLY DISTRIBUTED LIVE LOADS (in pounds per square foot)

USE	LIVE LOAD
Attics with limited storage ^{b, g, h}	20
Attics without storage ^b	10
Decks ^e	40
Exterior balconies	60
Fire escapes	40
Guardrails and handrails ^d	200 ⁱ
Guardrails in-fill components ^f	50 ⁱ
Passenger vehicle garages ^a	50 ^a
Rooms other than sleeping rooms	40
Sleeping rooms	30
Stairs	40°

For SI: 1 pound per square foot = 0.0479 kPa, 1 square inch = 645 mm², 1 pound = 4.45 N.

- a. Elevated garage floors shall be capable of supporting a 2,000-pound load applied over a 20-square-inch area.
- b. Attics without storage are those where the maximum clear height between joist and rafter is less than 42 inches, or where there are not two or more adjacent trusses with the same web configuration capable of containing a rectangle 42 inches high by 2 feet wide, or greater, located within the plane of the truss. For attics without storage, this live load need not be assumed to act concurrently with any other live load requirements.
- c. Individual stair treads shall be designed for the uniformly distributed live load or a 300-pound concentrated load acting over an area of 4 square inches, whichever produces the greater stresses.
- d. A single concentrated load applied in any direction at any point along the top.
- e. See Section R502.2.1 for decks attached to exterior walls.
- f. Guard in-fill components (all those except the handrail), balusters and panel fillers shall be designed to withstand a horizontally applied normal load of 50 pounds on an area equal to 1 square foot. This load need not be assumed to act concurrently with any other live load requirement.
- g. For attics with limited storage and constructed with trusses, this live load need be applied only to those portions of the bottom chord where there are two or more adjacent trusses with the same web configuration capable of containing a rectangle 42 inches high or greater by 2 feet wide or greater, located within the plane of the truss. The rectangle shall fit between the top of the bottom chord and the bottom of any other truss member, provided that each of the following criteria is met:
 - 1. The attic area is accessible by a pull-down stairway or framed opening
 - in accordance with Section R807.1; and
 - 2. The truss has a bottom chord pitch less than 2:12.
- h. Attic spaces served by a fixed stair shall be designed to support the minimum live load specified for sleeping rooms.
- i. Glazing used in handrail assemblies and guards shall be designed with a safety factor of 4. The safety factor shall be applied to each of the concentrated loads applied to the top of the rail, and to the load on the in-fill components. These loads shall be determined independent of one another, and loads are assumed not to occur with any other live load.

TABLE R301.6 MINIMUM ROOF LIVE LOADS IN POUNDS-FORCE PER SQUARE FOOT OF HORIZONTAL PROJECTION

	TRIBUTARY LOADED AREA IN SQUARE FEET FOR ANY STRUCTURAL MEMBER					
ROOF SLOPE	0 to 200	201 to 600	Over 600			
Flat or rise less than 4 inches per foot (1:3)	20	16	12			
Rise 4 inches per foot (1:3) to less than 12 inches per foot (1:1)	16	14	12			
Rise 12 inches per foot (1:1) and greater	12	12	12			

For SI: 1 square foot = 0.0929 m², 1 pound per square foot = 0.0479 kPa, 1 inch per foot = 83.3 mm/m.

TABLE R301.7 ALLOWABLE DEFLECTION OF STRUCTURAL MEMBERS^{a,b,c,d}

STRUCTURAL MEMBER	ALLOWABLE DEFLECTION
Rafters having slopes greater than 3/12 with no finished ceiling attached to rafters	L/180
Interior walls and partitions	H/180
Floors and plastered ceilings	L/360
All other structural members	L/240
Exterior walls with plaster or stucco finish	H/360
Exterior walls—wind loads ^a with brittle finishes	L/240
Exterior walls—wind loads ^a with flexible finishes	L/120
Veneer masonry walls	L/600

Note: L =span length, H =span height.

a. The wind load shall be permitted to be taken as 0.7 times the Component and Cladding loads for the purpose of the determining deflection limits herein.

11

- b. For cantilever members, L shall be taken as twice the length of the cantilever.
- c. For aluminum structural members or panels used in roofs or walls of sunroom additions or patio covers, not supporting edge of glass or sandwich panels, the total load deflection shall not exceed L /60. For sandwich panels used in roofs or walls of sunroom additions or patio covers, the total load deflection shall not exceed L/120.
- d. Deflection for exterior walls with interior gypsum board finish shall be limited to an allowable deflection of H/180.

R301.8 Nominal sizes. For the purposes of this code, where dimensions of lumber are specified, they shall be deemed to be nominal dimensions unless specifically designated as actual dimensions.

SECTION R302 EXTERIOR WALL LOCATION

R302.1 Exterior walls. Construction, projections, openings and penetrations of exterior walls of dwellings and accessory buildings shall comply with Table R302.1.

Exceptions:

- 1. Walls, projections, openings or penetrations in walls perpendicular to the line used to determine the fire separation distance.
- 2. Walls of dwellings and accessory structures located on the same lot.
- 3. Detached tool sheds and storage sheds, playhouses and similar structures exempted from permits are not required to provide wall protection based on location on the lot. Projections beyond the exterior wall shall not extend over the lot line.
- 4. Detached garages accessory to a dwelling located within 2 feet (610 mm) of a lot line are permitted to have roof eave projections not exceeding 4 inches (102 mm).
- 5. Foundation vents installed in compliance with this code are permitted.

SECTION R303 LIGHT, VENTILATION AND HEATING

R303.1 Habitable rooms. All habitable rooms shall have an aggregate glazing area of not less than 8 percent of the floor area of such rooms. Natural ventilation shall be through windows, doors, louvers or other approved openings to the outdoor air. Such openings shall be provided with ready access or shall otherwise be readily controllable by the building occupants. The minimum openable area to the outdoors shall be 4 percent of the floor area being ventilated.

Exceptions:

1. The glazed areas need not be openable where the opening is not required by Section R310 and an approved mechanical ventilation system capable of

producing 0.35 air change per hour in the room is installed or a whole-house mechanical ventilation system is installed capable of supplying outdoor ventilation air of 15 cubic feet per minute (cfm) (78 L/s) per occupant computed on the basis of two occupants for the first bedroom and one occupant for each additional bedroom.

- 2. The glazed areas need not be installed in rooms where Exception 1 above is satisfied and artificial light is provided capable of producing an average illumination of 6 footcandles (65 lux) over the area of the room at a height of 30 inches (762 mm) above the floor level.
- 3. Use of sunroom additions and patio covers, as defined in Section R202, shall be permitted for natural ventilation if in excess of 40 percent of the exterior sunroom walls are open, or are enclosed only by insect screening.

R303.2 Adjoining rooms. For the purpose of determining light and ventilation requirements, any room shall be considered as a portion of an adjoining room when at least one-half of the area of the common wall is open and unobstructed and provides an opening of not less than one-tenth of the floor area of the interior room but not less than 25 square feet (2.3 m²).

Exception: Openings required for light and/or ventilation shall be permitted to open into a thermally isolated sunroom addition or patio cover, provided that there is an openable area between the adjoining room and the sunroom addition or patio cover of not less than one-tenth of the floor area of the interior room but not less than 20 square feet (2 m^2) . The minimum openable area to the outdoors shall be based upon the total floor area being ventilated.

R303.3 Bathrooms. Bathrooms, water closet compartments and other similar rooms shall be provided with aggregate glazing area in windows of not less than 3 square feet (0.3 m^2) , one-half of which must be openable.

Exception: The glazed areas shall not be required where artificial light and a mechanical ventilation system are provided. The minimum ventilation rates shall be 50 cubic feet per minute (24 L/s) for intermittent ventilation or 20 cubic feet per minute (10 L/s) for continuous ventilation. Ventilation air from the space shall be exhausted directly to the outside.

	E	XTERIOR WALLS		
EXTE	RIOR WALL ELEMENT	MINIMUM FIRE-RESISTANCE RATING	MINIMUM FIRE SEPARATION DISTANCE	
337 11	(Fire-resistance rated)	1 hour with exposure from both sides	0 feet	
Walls	(Not fire-resistance rated)	0 hours	5 feet	
D	(Fire-resistance rated)	1 hour on the underside	2 feet	
Projections	(Not fire-resistance rated)	0 hours	5 feet	
	Not allowed	N/A	< 3 feet	
Openings	25% Maximum of Wall Area	0 hours	3 feet	
	Unlimited	0 hours	5 feet	
Penetrations	All	Comply with Section R317.3	< 5 feet	
Penetrations	All	None required	5 feet	

TABLE R302.1 EXTERIOR WALI

N/A = Not Applicable.

R303.4 Opening location. Outdoor intake and exhaust openings shall be located in accordance with Sections R303.4.1 and R303.4.2.

R303.4.1 Intake openings. Mechanical and gravity outdoor air intake openings shall be located a minimum of 10 feet (3048 mm) from any hazardous or noxious contaminant, such as vents, chimneys, plumbing vents, streets, alleys, parking lots and loading docks, except as otherwise specified in this code. Where a source of contaminant is located within 10 feet (3048 mm) of an intake opening, such opening shall be located a minimum of 2 feet (610 mm) below the contaminant source.

For the purpose of this section, the exhaust from dwelling unit toilet rooms, bathrooms and kitchens shall not be considered as hazardous or noxious.

R303.4.2 Exhaust openings. Outside exhaust openings shall be located so as not to create a nuisance. Exhaust air shall not be directed onto walkways.

R303.5 Outside opening protection. Air exhaust and intake openings that terminate outdoors shall be protected with corrosion-resistant screens, louvers or grilles having a minimum opening size of $\frac{1}{4}$ inch (6 mm) and a maximum opening size of $\frac{1}{2}$ inch (13 mm), in any dimension. Openings shall be protected against local weather conditions. Outdoor air exhaust and intake openings shall meet the provisions for exterior wall opening protectives in accordance with this code.

R303.6 Stairway illumination. All interior and exterior stairways shall be provided with a means to illuminate the stairs, including the landings and treads. Interior stairways shall be provided with an artificial light source located in the immediate vicinity of each landing of the stairway. For interior stairs the artificial light sources shall be capable of illuminating treads and landings to levels not less than 1 foot-candle (11 lux) measured at the center of treads and landings. Exterior stairways shall be provided with an artificial light source located in the immediate vicinity of the top landing of the stairway. Exterior stairways providing access to a basement from the outside grade level shall be provided with an artificial light source located in the immediate vicinity of the bottom landing of the stairway.

Exception: An artificial light source is not required at the top and bottom landing, provided an artificial light source is located directly over each stairway section.

R303.6.1 Light activation. Where lighting outlets are installed in interior stairways, there shall be a wall switch at each floor level to control the lighting outlet where the stairway has six or more risers. The illumination of exterior stairways shall be controlled from inside the dwelling unit.

Exception: Lights that are continuously illuminated or automatically controlled.

R303.7 Required glazed openings. Required glazed openings shall open directly onto a street or public alley, or a yard or court located on the same lot as the building.

R303.7.1 Roofed porches. Required glazed openings may face into a roofed porch where the porch abuts a street, yard or court and the longer side of the porch is at least 65 percent

open and unobstructed and the ceiling height is not less than 7 feet (2134 mm).

R303.7.2 Sunroom additions. Required glazed openings shall be permitted to open into sunroom additions or patio covers that abut a street, yard or court if in excess of 40 percent of the exterior sunroom walls are open, or are enclosed only by insect screening, and the ceiling height of the sunroom is not less than 7 feet (2134 mm).

R303.8 Required heating. When the winter design temperature in Table R301.2(1) is below $60^{\circ}F$ ($16^{\circ}C$), every dwelling unit shall be provided with heating facilities capable of maintaining a minimum room temperature of $68^{\circ}F$ ($20^{\circ}C$) at a point 3 feet (914 mm) above the floor and 2 feet (610 mm) from exterior walls in all habitable rooms at the design temperature. The installation of one or more portable space heaters shall not be used to achieve compliance with this section.

Exception: Seasonal structures not used as a primary residence for more than 90 days per year, unless rented, leased or let on terms expressed or implied to furnish heat, shall not be required to comply with this section.

R303.8.1 Nonowner occupied required heating. Every dwelling unit or portion thereof which is to be rented, leased or let on terms either expressed or implied to furnish heat to the occupants thereof shall be provided with facilities in accordance with Section R303.8 during the period from October 15 to May 1.

R303.9 Insect screens. Every door, window and other outside opening required for ventilation purposes shall be supplied with approved tightly fitted screens of not less than 16 mesh per inch (16 mesh per 25 mm) and every screen door used for insect control shall have a self-closing device.

SECTION R304 MINIMUM ROOM AREAS

R304.1 Minimum area. Every dwelling unit shall have at least one habitable room that shall have not less than 120 square feet (11 m^2) of gross floor area.

R304.2 Other rooms. Other habitable rooms shall have a floor area of not less than 70 square feet (6.5 m^2) .

Exception: Kitchens.

R304.3 Minimum dimensions. Habitable rooms shall not be less than 7 feet (2134 mm) in any horizontal dimension.

Exception: Kitchens.

R304.4 Height effect on room area. Portions of a room with a sloping ceiling measuring less than 5 feet (1524 mm) or a furred ceiling measuring less than 7 feet (2134 mm) from the finished floor to the finished ceiling shall not be considered as contributing to the minimum required habitable area for that room.

SECTION R305 CEILING HEIGHT

R305.1 Minimum height. Habitable rooms, hallways, corridors, bathrooms, toilet rooms, laundry rooms and basements

shall have a ceiling height of not less than 7 feet (2134 mm). The required height shall be measured from the finish floor to the lowest projection from the ceiling.

Exceptions:

- 1. Beams and girders spaced not less than 4 feet (1219 mm) on center may project not more than 6 inches (152 mm) below the required ceiling height.
- 2. Ceilings in basements without habitable spaces may project to within 6 feet, 8 inches (2032 mm) of the finished floor; and beams, girders, ducts or other obstructions may project to within 6 feet 4 inches (1931 mm) of the finished floor.
- 3. For rooms with sloped ceilings, at least 50 percent of the required floor area of the room must have a ceiling height of at least 7 feet (2134 mm) and no portion of the required floor area may have a ceiling height of less than 5 feet (1524 mm).

4. Bathrooms shall have a minimum ceiling height of 6 feet 8 inches (2036 mm) over the fixture and at the front clearance area for fixtures as shown in Figure R307.1. A shower or tub equipped with a showerhead shall have a minimum ceiling height of 6 feet 8 inches (2036 mm) above a minimum area 30 inches (762 mm) by 30 inches (762 mm) at the showerhead.

SECTION R306 SANITATION

R306.1 Toilet facilities. Every dwelling unit shall be provided with a water closet, lavatory, and a bathtub or shower.

R306.2 Kitchen. Each dwelling unit shall be provided with a kitchen area and every kitchen area shall be provided with a sink.

WATER CLOSETS

For SI: 1 inch = 25.4 mm.

FIGURE R307.1 MINIMUM FIXTURE CLEARANCES **R306.3 Sewage disposal.** All plumbing fixtures shall be connected to a sanitary sewer or to an approved private sewage disposal system.

R306.4 Water supply to fixtures. All plumbing fixtures shall be connected to an approved water supply. Kitchen sinks, lavatories, bathtubs, showers, bidets, laundry tubs and washing machine outlets shall be provided with hot and cold water.

R306.5 Water supply sources and sewage disposal systems. The water and drainage system of any building or premises where plumbing fixtures are installed shall be connected to a public or private water supply and a public or private sewer system. As provided for in Section 103.11 of Part I of the *Virginia Uniform Statewide Building Code* (13 VAC 5-63) for functional design, water supply sources and sewage disposal systems are regulated and approved by the Virginia Department of Health and the Virginia Department of Environmental Quality.

Note: See also the Memorandums of Agreement in the "Related Laws Package" which is available from the Virginia Department of Housing and Community Development.

SECTION R307 TOILET, BATH AND SHOWER SPACES

R307.1 Space required. Fixtures shall be spaced as per Figure R307.1.

R307.2 Bathtub and shower spaces. Bathtub and shower floors and walls above bathtubs with installed shower heads and in shower compartments shall be finished with a nonabsorbent surface. Such wall surfaces shall extend to a height of not less than 6 feet (1829 mm) above the floor.

SECTION R308 GLAZING

R308.1 Identification. Except as indicated in Section R308.1.1 each pane of glazing installed in hazardous locations as defined in Section R308.4 shall be provided with a manufacturer's designation specifying who applied the designation, designating the type of glass and the safety glazing standard with which it complies, which is visible in the final installation. The designation shall be acid etched, sandblasted, ceramic-fired, laser etched, embossed, or be of a type which once applied cannot be removed without being destroyed. A label shall be permitted in lieu of the manufacturer's designation.

Exceptions:

- 1. For other than tempered glass, manufacturer's designations are not required provided the building official approves the use of a certificate, affidavit or other evidence confirming compliance with this code.
- 2. Tempered spandrel glass is permitted to be identified by the manufacturer with a removable paper designation.

R308.1.1 Identification of multipane assemblies. Multipane assemblies having individual panes not exceeding 1 square foot (0.09 m^2) in exposed area shall have at least one pane in the assembly identified in accordance with Section R308.1. All other panes in the assembly shall be labeled "16 CFR 1201."

R308.2 Louvered windows or jalousies. Regular, float, wired or patterned glass in jalousies and louvered windows shall be no thinner than nominal $\frac{3}{16}$ inch (5 mm) and no longer than 48 inches (1219 mm). Exposed glass edges shall be smooth.

R308.2.1 Wired glass prohibited. Wired glass with wire exposed on longitudinal edges shall not be used in jalousies or louvered windows.

R308.3 Human impact loads. Individual glazed areas, including glass mirrors in hazardous locations such as those indicated as defined in Section R308.4, shall pass the test requirements of CPSC 16 CFR, Part 1201. Glazing shall comply with CPSC 16 CFR, Part 1201 criteria for Category I or Category II as indicated in Table R308.3.

Exception: Louvered windows and jalousies shall comply with Section R308.2.

R308.4 Hazardous locations. The following shall be considered specific hazardous locations for the purposes of glazing:

- 1. Glazing in swinging doors except jalousies.
- 2. Glazing in fixed and sliding panels of sliding door assemblies and panels in sliding and bifold closet door assemblies.
- 3. Glazing in storm doors.
- 4. Glazing in all unframed swinging doors.
- 5. Glazing in doors and enclosures for hot tubs, whirlpools, saunas, steam rooms, bathtubs and showers. Glazing in any part of a building wall enclosing these compartments where the bottom exposed edge of the

			GORY CLASSIFICAT	ION OF GLAZING		
EXPOSED SURFACE AREA OF ONE SIDE OF ONE LITE		GLAZING IN DOORS (Category Class)	GLAZED PANELS REGULATED BY ITEM 7 OF SECTION R308.4 (Category Class)	GLAZED PANELS REGULATED BY ITEM 6 OF SECTION R308.4 (Category Class)	GLAZING IN DOORS AND ENCLOSURES REGULATED BY ITEM 5 OF SECTION R308.4 (Category Class)	SLIDING GLASS DOORS PATIO TYPE (Category Class)
9 sq ft or less	Ι	Ι	NR	Ι	II	П
More than 9 sq ft	II	II	II	II	II	II

TABLE R308.3 MINIMUM CATEGORY CLASSIFICATION OF GLAZING

For SI: 1 square foot = 0.0929 m^2 . NR means "No Requirement." glazing is less than 60 inches (1524 mm) measured vertically above any standing or walking surface.

- 6. Glazing, in an individual fixed or operable panel adjacent to a door where the nearest vertical edge is within a 24-inch (610 mm) arc of the door in a closed position and whose bottom edge is less than 60 inches (1524 mm) above the floor or walking surface.
- 7. Glazing in an individual fixed or operable panel, other than those locations described in Items 5 and 6 above, that meets all of the following conditions:
 - 7.1. Exposed area of an individual pane larger than 9 square feet (0.836 m²).
 - 7.2. Bottom edge less than 18 inches (457 mm) above the floor.
 - 7.3. Top edge more than 36 inches (914 mm) above the floor.
 - 7.4. One or more walking surfaces within 36 inches (914 mm) horizontally of the glazing.
- 8. All glazing in railings regardless of an area or height above a walking surface. Included are structural baluster panels and nonstructural infill panels.
- 9. Glazing in walls and fences enclosing indoor and outdoor swimming pools, hot tubs and spas where the bottom edge of the glazing is less than 60 inches (1524 mm) above a walking surface and within 60 inches (1524 mm) horizontally of the water's edge. This shall apply to single glazing and all panes in multiple glazing.
- 10. Glazing adjacent to stairways, landings and ramps within 36 inches (914 mm) horizontally of a walking surface when the exposed surface of the glass is less than 60 inches (1524 mm) above the plane of the adjacent walking surface.
- 11. Glazing adjacent to stairways within 60 inches (1524 mm) horizontally of the bottom tread of a stairway in any direction when the exposed surface of the glass is less than 60 inches (1524 mm) above the nose of the tread.

Exception: The following products, materials and uses are exempt from the above hazardous locations:

- 1. Openings in doors through which a 3-inch (76 mm) sphere is unable to pass.
- 2. Decorative glass in Items 1, 6 or 7.
- 3. Glazing in Section R308.4, Item 6, when there is an intervening wall or other permanent barrier between the door and the glazing.
- 4. Glazing in Section R308.4, Item 6, in walls perpendicular to the plane of the door in a closed position, other than the wall toward which the door swings when opened, or where access through the door is to a closet or storage area 3 feet (914 mm) or less in depth. Glazing in these applications shall comply with Section R308.4, Item 7.

- 5. Glazing in Section R308.4, Items 7 and 10, when a protective bar is installed on the accessible side(s) of the glazing 36 inches ± 2 inches (914 mm ± 51 mm) above the floor. The bar shall be capable of withstanding a horizontal load of 50 pounds per linear foot (730 N/m) without contacting the glass and be a minimum of $1^{1}/_{2}$ inches (38 mm) in height.
- 6. Outboard panes in insulating glass units and other multiple glazed panels in Section R308.4, Item 7, when the bottom edge of the glass is 25 feet (7620 mm) or more above grade, a roof, walking surfaces, or other horizontal [within 45 degrees (0.79 rad) of horizontal] surface adjacent to the glass exterior.
- 7. Louvered windows and jalousies complying with the requirements of Section R308.2.
- 8. Mirrors and other glass panels mounted or hung on a surface that provides a continuous backing support.
- 9. Safety glazing in Section R308.4, Items 10 and 11, is not required where:
 - 9.1. The side of a stairway, landing or ramp has a guardrail or handrail, including balusters or in-fill panels, complying with the provisions of Sections 1013 and 1607.7 of the *International Building Code*; and
 - 9.2. The plane of the glass is more than 18 inches (457 mm) from the railing; or
 - 9.3. When a solid wall or panel extends from the plane of the adjacent walking surface to 34 inches (863 mm) to 36 inches (914 mm) above the floor and the construction at the top of that wall or panel is capable of withstanding the same horizontal load as the protective bar.
- 10. Glass block panels complying with Section R610.

R308.5 Site built windows. Site built windows shall comply with Section 2404 of the *International Building Code*.

R308.6 Skylights and sloped glazing. Skylights and sloped glazing shall comply with the following sections.

R308.6.1 Definitions.

SKYLIGHTS AND SLOPED GLAZING. Glass or other transparent or translucent glazing material installed at a slope of 15 degrees (0.26 rad) or more from vertical. Glazing materials in skylights, including unit skylights, solariums, sunrooms, roofs and sloped walls are included in this definition.

UNIT SKYLIGHT. A factory assembled, glazed fenestration unit, containing one panel of glazing material, that allows for natural daylighting through an opening in the roof assembly while preserving the weather-resistant barrier of the roof.

R308.6.2 Permitted materials. The following types of glazing may be used:

1. Laminated glass with a minimum 0.015-inch (0.38 mm) polyvinyl butyral interlayer for glass panes 16 square feet (1.5 m²) or less in area located such that the

highest point of the glass is not more than 12 feet (3658 mm) above a walking surface or other accessible area; for higher or larger sizes, the minimum interlayer thickness shall be 0.030 inch (0.76 mm).

- 2. Fully tempered glass.
- 3. Heat-strengthened glass.
- 4. Wired glass.
- 5. Approved rigid plastics.

R308.6.3 Screens, general. For fully tempered or heat-strengthened glass, a retaining screen meeting the requirements of Section R308.6.7 shall be installed below the glass, except for fully tempered glass that meets either condition listed in Section R308.6.5.

R308.6.4 Screens with multiple glazing. When the inboard pane is fully tempered, heat-strengthened or wired glass, a retaining screen meeting the requirements of Section R308.6.7 shall be installed below the glass, except for either condition listed in Section R308.6.5. All other panes in the multiple glazing may be of any type listed in Section R308.6.2.

R308.6.5 Screens not required. Screens shall not be required when fully tempered glass is used as single glazing or the inboard pane in multiple glazing and either of the following conditions are met:

- 1. Glass area 16 square feet (1.49 m^2) or less. Highest point of glass not more than 12 feet (3658 mm) above a walking surface or other accessible area, nominal glass thickness not more than ${}^{3}\!/_{16}$ inch (4.8 mm), and (for multiple glazing only) the other pane or panes fully tempered, laminated or wired glass.
- 2. Glass area greater than 16 square feet (1.49 m²). Glass sloped 30 degrees (0.52 rad) or less from vertical, and highest point of glass not more than 10 feet (3048 mm) above a walking surface or other accessible area.

R308.6.6 Glass in greenhouses. Any glazing material is permitted to be installed without screening in the sloped areas of greenhouses, provided the greenhouse height at the ridge does not exceed 20 feet (6096 mm) above grade.

R308.6.7 Screen characteristics. The screen and its fastenings shall be capable of supporting twice the weight of the glazing, be firmly and substantially fastened to the framing members, and have a mesh opening of no more than 1 inch by 1 inch (25 mm by 25 mm).

R308.6.8 Curbs for skylights. All unit skylights installed in a roof with a pitch flatter than three units vertical in 12 units horizontal (25-percent slope) shall be mounted on a curb extending at least 4 inches (102 mm) above the plane of the roof unless otherwise specified in the manufacturer's installation instructions.

R308.6.9 Testing and labeling. Unit skylights shall be tested by an approved independent laboratory, and bear a label identifying manufacturer, performance grade rating and approved inspection agency to indicate compliance with the requirements of AAMA/WDMA/CSA 101/I.S.2/A440.

SECTION R309 GARAGES AND CARPORTS

R309.1 Opening protection. Openings from a private garage directly into a room used for sleeping purposes shall not be permitted. Other openings between the garage and residence shall be equipped with solid wood doors not less than $1^{3}/_{8}$ inches (35 mm) in thickness, solid or honeycomb core steel doors not less than $1^{3}/_{8}$ inches (35 mm) thick, or 20-minute fire-rated doors.

R309.1.1 Duct penetration. Ducts in the garage and ducts penetrating the walls or ceilings separating the dwelling from the garage shall be constructed of a minimum No. 26 gage (0.48 mm) sheet steel or other approved material and shall have no openings into the garage.

R309.1.2 Other penetrations. Penetrations through the separation required in Section R309.2 shall be protected by filling the opening around the penetrating item with approved material to resist the free passage of flame and products of combustion.

R309.2 Separation required. The garage shall be separated from the residence and its attic area by not less than $\frac{1}{2}$ -inch (12.7 mm) gypsum board applied to the garage side. Garages beneath habitable rooms shall be separated from all habitable rooms above by not less than $\frac{5}{8}$ -inch (15.9 mm) Type X gypsum board or equivalent. Where the separation is a floor-ceiling assembly, the structure supporting the separation shall also be protected by not less than $\frac{1}{2}$ -inch (12.7 mm) gypsum board or equivalent. Garages located less than 3 feet (914 mm) from a dwelling unit on the same lot shall be protected with not less than $\frac{1}{2}$ -inch (12.7 mm) gypsum board applied to the interior side of exterior walls that are within this area. Openings in these walls shall be regulated by Section R309.1. This provision does not apply to garage walls that are perpendicular to the adjacent dwelling unit wall.

R309.3 Floor surface. Garage floor surfaces shall be of approved noncombustible material.

The area of floor used for parking of automobiles or other vehicles shall be sloped to facilitate the movement of liquids to a drain or toward the main vehicle entry doorway.

R309.4 Carports. Carports shall be open on at least two sides. Carport floor surfaces shall be of approved noncombustible material. Carports not open on at least two sides shall be considered a garage and shall comply with the provisions of this section for garages.

Exception: Asphalt surfaces shall be permitted at ground level in carports.

The area of floor used for parking of automobiles or other vehicles shall be sloped to facilitate the movement of liquids to a drain or toward the main vehicle entry doorway.

R309.5 Flood hazard areas. For buildings located in flood hazard areas as established by Table R301.2(1), garage floors shall be:

- 1. Elevated to or above the design flood elevation as determined in Section R324; or
- 2. Located below the design flood elevation provided they are at or above grade on all sides, are used solely for parking, building access, or storage, meet the require-

ments of Section R324, and are otherwise constructed in accordance with this code.

R309.6 Automatic garage door openers. Automatic garage door openers, if provided, shall be listed in accordance with UL 325.

SECTION R310 EMERGENCY ESCAPE AND RESCUE OPENINGS

R310.1 Emergency escape and rescue required. Basements and each sleeping room designated on the construction documents shall have at least one openable emergency escape and rescue opening. Such opening shall be directly to the exterior of the building or to a deck, screen porch or egress court, all of which shall provide access to a public street, public alley or yard. Where emergency escape and rescue openings are provided they shall have a sill height of not more than 44 inches (1118 mm) above the floor. Where a door opening having a threshold below the adjacent ground elevation serves as an emergency escape and rescue opening and is provided with a bulkhead enclosure, the bulkhead enclosure shall comply with Section R310.3. The net clear opening dimensions required by this section shall be obtained by the normal operation of the emergency escape and rescue opening from the inside, except that tilt-out or removable sash designed windows shall be permitted to be used. Emergency escape and rescue openings with a finished height below the adjacent ground elevation shall be provided with a window well in accordance with Section R310.2.

Exceptions:

- 1. Dwelling units equipped throughout with an approved automatic sprinkler system installed in accordance with NFPA 13, 13R or 13D.
- 2. Basements used only to house mechanical equipment and not exceeding total floor area of 200 square feet (18.58 m^2) .

R310.1.1 Minimum opening area. All emergency escape and rescue openings shall have a minimum net clear opening of 5.7 square feet (0.530 m^2), including the tilting or removal of the sash as the normal operation to comply with sections R310.1.2 and R310.1.3.

Exception: Grade floor openings shall have a minimum net clear opening of 5 square feet (0.465 m^2) .

R310.1.2 Minimum opening height. The minimum net clear opening height shall be 24 inches (610 mm).

R310.1.3 Minimum opening width. The minimum net clear opening width shall be 20 inches (508 mm).

R310.1.4 Operational constraints. Emergency escape and rescue openings shall be operational from the inside of the room without the use of keys, tools or special knowledge.

R310.2 Window wells. The minimum horizontal area of the window well shall be 9 square feet (0.9 m²), with a minimum horizontal projection and width of 36 inches (914 mm). The area of the window well shall allow the emergency escape and rescue opening to be fully opened.

Exception: The ladder or steps required by Section R310.2.1 shall be permitted to encroach a maximum of 6 inches (152 mm) into the required dimensions of the window well.

R310.2.1 Ladder and steps. Window wells with a vertical depth greater than 44 inches (1118 mm) shall be equipped with a permanently affixed ladder or steps usable with the window in the fully open position. Ladders or steps required by this section shall not be required to comply with Sections R311.5 and R311.6. Ladders or rungs shall have an inside width of at least 12 inches (305 mm), shall project at least 3 inches (76 mm) from the wall and shall be spaced not more than 18 inches (457 mm) on center vertically for the full height of the window well.

R310.3 Bulkhead enclosures. Bulkhead enclosures shall provide direct access to the basement. The bulkhead enclosure with the door panels in the fully open position shall provide the minimum net clear opening required by Section R310.1.1. Bulkhead enclosures shall also comply with Section R311.5.8.2.

R310.4 Bars, grilles, covers and screens. Bars, grilles, covers, screens or similar devices are permitted to be placed over emergency escape and rescue openings, bulkhead enclosures, or window wells that serve such openings, provided the minimum net clear opening size complies with Sections R310.1.1 to R310.1.3, and such devices shall be releasable or removable from the inside without the use of a key, tool, special knowledge or force greater than that which is required for normal operation of the escape and rescue opening.

R310.5 Emergency escape windows under decks and porches. Emergency escape windows are allowed to be installed under decks and porches provided the location of the deck allows the emergency escape window to be fully opened and provides a path not less than 36 inches (914 mm) in height to a yard or court.

SECTION R311 MEANS OF EGRESS

R311.1 General. Stairways, ramps, exterior egress balconies, hallways and doors shall comply with this section.

R311.2 Construction.

R311.2.1 Attachment. Required exterior egress balconies, exterior exit stairways and similar means of egress components shall be positively anchored to the primary structure to resist both vertical and lateral forces. Such attachment shall not be accomplished by use of toenails or nails subject to withdrawal.

R311.2.2 Under stair protection. Enclosed accessible space under stairs shall have walls, under stair surface and any soffits protected on the enclosed side with $\frac{1}{2}$ -inch (13 mm) gypsum board.

R311.3 Hallways. The minimum width of a hallway shall be not less than 3 feet (914 mm).

R311.4 Doors.

R311.4.1 Exit door required. Not less than one exit door conforming to this section shall be provided for each dwelling unit. The required exit door shall provide for direct

access from the habitable portions of the dwelling to the exterior without requiring travel through a garage. Access to habitable levels not having an exit in accordance with this section shall be by a ramp in accordance with Section R311.6 or a stairway in accordance with Section R311.5.

R311.4.2 Door type and size. The required exit door shall be a side-hinged door not less than 3 feet (914 mm) in width and 6 feet 8 inches (2032 mm) in height. Other doors shall not be required to comply with these minimum dimensions.

R311.4.3 Landings at doors. There shall be a floor or landing on each side of each exterior door. The floor or landing at the exterior door shall not be more than 1.5 inches (38 mm) lower than the top of the threshold. The landing shall be permitted to have a slope not to exceed 0.25 unit vertical in 12 units horizontal (2-percent).

Exceptions:

- 1. Where a stairway of two or fewer risers is located on the exterior side of a door, other than the required exit door, a landing is not required for the exterior side of the door provided the door, other than an exterior storm or screen door does not swing over the stairway.
- 2. The exterior landing at an exterior doorway shall not be more than $7 \frac{3}{4}$ inches (196 mm) below the top of the threshold, provided the door, other than an exterior storm or screen door does not swing over the landing.
- 3. The height of floors at exterior doors other than the exit door required by Section R311.4.1 shall not be more than $7^{3}/_{4}$ inches (186 mm) lower than the top of the threshold.

The width of each landing shall not be less than the door served. Every landing shall have a minimum dimension of 36 inches (914 mm) measured in the direction of travel.

R311.4.4 Type of lock or latch. All egress doors shall be readily openable from the side from which egress is to be made without the use of a key or special knowledge or effort.

R311.5 Stairways.

R311.5.1 Width. Stairways shall not be less than 36 inches (914 mm) in clear width at all points above the permitted handrail height and below the required headroom height. Handrails shall not project more than 4.5 inches (114 mm) on either side of the stairway and the minimum clear width of the stairway at and below the handrail height, including treads and landings, shall not be less than 31.5 inches (787 mm) where a handrail is installed on one side and 27 inches (698 mm) where handrails are provided on both sides.

Exception: The width of spiral stairways shall be in accordance with Section R311.5.8.

R311.5.2 Headroom. The minimum headroom in all parts of the stairway shall not be less than 6 feet 8 inches (2036 mm) measured vertically from the sloped plane adjoining the tread nosing or from the floor surface of the landing or platform.

R311.5.3 Stair treads and risers.

R311.5.3.1 Riser height. The maximum riser height shall be $8^{1}/_{4}$ inches (210 mm). The riser shall be measured || vertically between leading edges of the adjacent treads. The greatest riser height within any flight of stairs shall not exceed the smallest by more than $3/_{8}$ inch (9.5 mm).

R311.5.3.2 Tread depth. The minimum tread depth shall be 9 inches (229 mm). The tread depth shall be ||| measured horizontally between the vertical planes of the foremost projection of adjacent treads and at a right angle to the tread's leading edge. The greatest tread depth within any flight of stairs shall not exceed the smallest by more than $\frac{3}{8}$ inch (9.5 mm). Winder treads shall have a minimum tread depth of 10 inches (254 mm) measured as above at a point 12 inches (305 mm) from the side where the treads are narrower. Winder treads shall have a minimum tread depth of 6 inches (152 mm) at any point. Within any flight of stairs, the greatest winder tread depth at the 12 inch (305 mm) [] walk line shall not exceed the smallest by more than $\frac{3}{8}$ inch (9.5 mm).

R311.5.3.3 Profile. The radius of curvature at the leading edge of the tread shall be no greater than ${}^{9}/{}_{16}$ inch (14 mm). A nosing not less than ${}^{3}/{}_{4}$ inch (19 mm) but not more than $1{}^{1}/{}_{4}$ inch (32 mm) shall be provided on stairways with solid risers. The greatest nosing projection shall not exceed the smallest nosing projection by more than ${}^{3}/{}_{8}$ inch (9.5 mm) between two stories, including the nosing at the level of floors and landings. Beveling of nosing shall not exceed ${}^{1}/{}_{2}$ inch (12.7 mm). Risers shall be vertical or sloped from the underside of the leading edge of the tread above at an angle not more than 30 degrees (0.51 rad) from the vertical. Open risers are permitted, provided that the opening between treads does not permit the passage of a 4-inch diameter (102 mm) sphere.

Exceptions:

- 1. A nosing is not required where the tread depth is a minimum of 11 inches (279 mm).
- 2. The opening between adjacent treads is not limited on stairs with a total rise of 30 inches (762 mm) or less.

R311.5.4 Landings for stairways. There shall be a floor or landing at the top and bottom of each stairway.

Exception: A floor or landing is not required at the top of an interior flight of stairs, including stairs in an enclosed garage, provided a door does not swing over the stairs.

A flight of stairs shall not have a vertical rise larger than 12 feet (3658 mm) between floor levels or landings.

The width of each landing shall not be less than the width of the stairway served. Every landing shall have a minimum dimension of 36 inches (914 mm) measured in the direction of travel.

R311.5.5 Stairway walking surface. The walking surface of treads and landings of stairways shall be level or sloped

no steeper than one unit vertical in 48 inches horizontal (2-percent slope).

R311.5.6 Handrails. Handrails shall be provided on at least one side of each continuous run of treads or flight with four or more risers.

R311.5.6.1 Height. Handrail height, measured vertically from the sloped plane adjoining the tread nosing, or finish surface of ramp slope, shall be not less than 34 inches (864 mm) and not more than 38 inches (965 mm).

R311.5.6.2 Continuity. Handrails for stairways shall be continuous for the full length of the flight, from a point directly above the top riser of the flight to a point directly above the lowest riser of the flight. Handrail ends shall be returned or shall terminate in newel posts or safety terminals. Handrails adjacent to a wall shall have a space of not less than $1^{1}/_{2}$ inch (38 mm) between the wall and the handrails.

Exceptions:

- 1. Handrails shall be permitted to be interrupted by a newel post at the turn.
- 2. The use of a volute, turnout, starting easing or starting newel shall be allowed over the lowest tread.

R311.5.6.3 Handrail grip size. All required handrails shall be of one of the following types or provide equivalent graspability.

- 1. Type I. Handrails with a circular cross section shall have an outside diameter of at least $1^{1}/_{4}$ inches (32 mm) and not greater than 2 inches (51 mm). If the handrail is not circular it shall have a perimeter dimension of at least 4 inches (102 mm) and not greater than $6^{1}/_{4}$ inches (160 mm) with a maximum cross section of dimension of $2^{1}/_{4}$ inches (57 mm).
- 2. Type II. Handrails with a perimeter greater than $6^{1}/_{4}$ inches (160 mm) shall provide a graspable finger recess area on both sides of the profile. The finger recess shall begin within a distance of $3^{1}/_{4}$ inch (19 mm) measured vertically from the tallest portion of the profile and achieve a depth of at least $5^{1}/_{16}$ inch (8 mm) within $7^{1}/_{8}$ inch (22 mm) below the widest portion of the profile. This required depth shall continue for at least $3^{1}/_{4}$ inches (10 mm) to a level that is not less than $1^{3}/_{4}$ inches (45 mm) below the tallest portion of the profile. The minimum width of the handrail above the recess shall be $1^{1}/_{4}$ inches (32 mm) to a maximum of $2^{3}/_{4}$ inches (70 mm). Edges shall have a minimum radius of 0.01 inch (0.25 mm).

R311.5.7 Illumination. All stairs shall be provided with illumination in accordance with Section R303.6.

R311.5.8 Special stairways. Spiral stairways and bulkhead enclosure stairways shall comply with all requirements of Section R311.5 except as specified below.

R311.5.8.1 Spiral stairways. Spiral stairways are permitted, provided the minimum width shall be 26 inches (660 mm) with each tread having a $7^{1}/_{2}$ -inches (190 mm) minimum tread depth at 12 inches from the narrower edge. All treads shall be identical, and the rise shall be no more than $9^{1}/_{2}$ inches (241 mm). A minimum headroom of 6 feet 6 inches (1982 mm) shall be provided.

R311.5.8.2 Bulkhead enclosure stairways. Stairways serving bulkhead enclosures, not part of the required building egress, providing access from the outside grade level to the basement shall be exempt from the requirements of Sections R311.4.3 and R311.5 where the maximum height from the basement finished floor level to grade adjacent to the stairway does not exceed 8 feet (2438 mm), and the grade level opening to the stairway is covered by a bulkhead enclosure with hinged doors or other approved means.

R311.6 Ramps.

R311.6.1 Maximum slope. Ramps shall have a maximum slope of one unit vertical in twelve units horizontal (8.3-percent slope).

Exception: Where it is technically infeasible to comply because of site constraints, ramps may have a maximum slope of one unit vertical in eight horizontal (12.5 percent slope).

R311.6.2 Landings required. A minimum 3-foot-by-3-foot (914 mm by 914 mm) landing shall be provided:

1. At the top and bottom of ramps.

2. Where doors open onto ramps.

3. Where ramps change direction.

R311.6.3 Handrails required. Handrails shall be provided on at least one side of all ramps exceeding a slope of one unit vertical in 12 units horizontal (8.33-percent slope).

R311.6.3.1 Height. Handrail height, measured above the finished surface of the ramp slope, shall be not less than 34 inches (864 mm) and not more than 38 inches (965 mm).

R311.6.3.2 Handrail grip size. Handrails on ramps shall comply with Section R311.5.6.3.

R311.6.3.3 Continuity. Handrails where required on ramps shall be continuous for the full length of the ramp. Handrail ends shall be returned or shall terminate in newel posts or safety terminals. Handrails adjacent to a wall shall have a space of not less than 1.5 inches (38 mm) between the wall and the handrails.

SECTION R312 GUARDS

R312.1 Guards. Porches, balconies, ramps or raised floor surfaces located more than 30 inches (762 mm) above the floor or grade below shall have guards not less than 36 inches (914 mm) in height. Open sides of stairs with a total rise of more than 30 inches (762 mm) above the floor or grade below shall have

guards not less than 34 inches (864 mm) in height measured vertically from the nosing of the treads.

Porches and decks which are enclosed with insect screening shall be equipped with guards where the walking surface is located more than 30 inches (762 mm) above the floor or grade below.

R312.2 Guard opening limitations. Required guards on open sides of stairways, raised floor areas, balconies and porches shall have intermediate rails or ornamental closures which do not allow passage of a sphere 4 inches (102 mm) or more in diameter.

Exceptions:

- 1. The triangular openings formed by the riser, tread and bottom rail of a guard at the open side of a stairway are permitted to be of such a size that a sphere 6 inches (152 mm) cannot pass through.
- 2. Openings for required guards on the sides of stair treads shall not allow a sphere $4^{3}/_{8}$ inches (107 mm) to pass through.

SECTION R313 SMOKE ALARMS

R313.1 Smoke detection and notification. All smoke alarms shall be listed in accordance with UL 217 and installed in accordance with the provisions of this code and the household fire warning equipment provisions of NFPA 72.

Household fire alarm systems installed in accordance with NFPA 72 that include smoke alarms, or a combination of smoke detector and audible notification device installed as required by this section for smoke alarms, shall be permitted. The household fire alarm system shall provide the same level of smoke detection and alarm as required by this section for smoke alarms in the event the fire alarm panel is removed or the system is not connected to a central station.

R313.2 Location. Smoke alarms shall be installed in the following locations:

- 1. In each sleeping room.
- 2. Outside each separate sleeping area in the immediate vicinity of the bedrooms.
- 3. On each additional story of the dwelling, including basements but not including crawl spaces and uninhabitable attics. In dwellings or dwelling units with split levels and without an intervening door between the adjacent levels, a smoke alarm installed on the upper level shall suffice for the adjacent lower level provided that the lower level is less than one full story below the upper level.

When more than one smoke alarm is required to be installed within an individual dwelling unit the alarm devices shall be interconnected in such a manner that the actuation of one alarm will activate all of the alarms in the individual unit.

R313.2.1 Alterations, repairs and additions. When alterations, repairs or additions requiring a permit occur, or when one or more sleeping rooms are added or created in existing dwellings, the individual dwelling unit shall be equipped with smoke alarms located as required for new dwellings; the smoke alarms shall be interconnected and hard wired.

Exceptions:

- 1. Interconnection and hard-wiring of smoke alarms in existing areas shall not be required where the alterations or repairs do not result in the removal of interior wall or ceiling finishes exposing the structure, unless there is an attic, crawl space or basement available which could provide access for hard wiring and interconnection without the removal of interior finishes.
- 2. Work involving the exterior surfaces of dwellings, such as the replacement of roofing or siding, or the addition or replacement of windows or doors, or the addition of a porch or deck, are exempt from the requirements of this section.

R313.3 Power source. In new construction, the required smoke alarms shall receive their primary power from the building wiring when such wiring is served from a commercial source, and when primary power is interrupted, shall receive power from a battery. Wiring shall be permanent and without a disconnecting switch other than those required for overcurrent protection. Smoke alarms shall be permitted to be battery operated when installed in buildings without commercial power or in buildings that undergo alterations, repairs or additions regulated by Section R313.2.1.

SECTION R314 FOAM PLASTIC

R314.1 General. The provisions of this section shall govern the materials, design, application, construction and installation of foam plastic materials.

R314.2 Labeling and identification. Packages and containers of foam plastic insulation and foam plastic insulation components delivered to the job site shall bear the label of an approved agency showing the manufacturer's name, the product listing, product identification and information sufficient to determine that the end use will comply with the requirements.

R314.3 Surface burning characteristics. Unless otherwise allowed in Section R314.5 or R314.6, all foam plastic or foam plastic cores used as a component in manufactured assemblies used in building construction shall have a flame spread index of not more than 75 and shall have a smoke-developed index of not more than 450 when tested in the maximum thickness intended for use in accordance with ASTM E 84. Loose-fill-type foam plastic insulation shall be tested as board stock for the flame spread index and smoke-developed index.

Exception: Foam plastic insulation more than 4 inches thick shall have a maximum flame spread index of 75 and a smoke-developed index of 450 where tested at a minimum thickness of 4 inches, provided the end use is approved in accordance with Section R314.6 using the thickness and density intended for use.

R314.4 Thermal barrier. Unless otherwise allowed in Section R314.5 or Section R314.6, foam plastic shall be separated from the interior of a building by an approved thermal barrier of minimum 0.5 inch (12.7 mm) gypsum wallboard or an approved finish material equivalent to a thermal barrier material that will limit the average temperature rise of the unexposed surface to no more than 250°F (139°C) after 15 minutes of fire exposure complying with the ASTM E 119 standard time temperature curve. The thermal barrier shall be installed in such a manner that it will remain in place for 15 minutes based on NFPA 286 with the acceptance criteria of Section R315.4, FM 4880, UL 1040 or UL 1715.

R314.5 Specific requirements. The following requirements shall apply to these uses of foam plastic unless specifically approved in accordance with Section R314.6 or by other sections of the code or the requirements of Sections R314.2 through R314.4 have been met.

R314.5.1 Masonry or concrete construction. The thermal barrier specified in Section R314.4 is not required in a masonry or concrete wall, floor or roof when the foam plastic insulation is separated from the interior of the building by a minimum 1-inch (25 mm) thickness of masonry or concrete.

R314.5.2 Roofing. The thermal barrier specified in Section R314.4 is not required when the foam plastic in a roof assembly or under a roof covering is installed in accordance with the code and the manufacturer's installation instructions and is separated from the interior of the building by tongue-and-groove wood planks or wood structural panel sheathing in accordance with Section R803, not less than ¹⁵/₃₂ inch (11.9 mm) thick bonded with exterior glue and identified as Exposure 1, with edges supported by blocking or tongue-and-groove joints or an equivalent material. The smoke-developed index for roof applications shall not be limited.

R314.5.3 Attics. The thermal barrier specified in Section 314.4 is not required where attic access is required by Section R807.1 and where the space is entered only for service of utilities and when the foam plastic insulation is protected against ignition using one of the following ignition barrier materials:

- 1. 1.5-inch-thick (38 mm) mineral fiber insulation;
- 2. 0.25-inch-thick (6.4 mm) wood structural panels;
- 3. 0.375-inch (9.5 mm) particleboard;
- 4. 0.25-inch (6.4 mm) hardboard;
- 5. 0.375-inch (9.5 mm) gypsum board; or
- 6. Corrosion-resistant steel having a base metal thickness of 0.016 inch (0.406 mm).

The above ignition barrier is not required where the foam plastic insulation has been tested in accordance with Section R314.6.

R314.5.4 Crawl spaces. The thermal barrier specified in Section R314.4 is not required where crawlspace access is required by Section R408.3 and where entry is made only for service of utilities and the foam plastic insulation is pro-

tected against ignition using one of the following ignition barrier materials:

- 1. 1.5-inch-thick (38 mm) mineral fiber insulation;
- 2. 0.25-inch-thick (6.4 mm) wood structural panels;
- 3. 0.375-inch (9.5 mm) particleboard;
- 4. 0.25-inch (6.4 mm) hardboard;
- 5. 0.375-inch (9.5 mm) gypsum board; or
- 6. Corrosion-resistant steel having a base metal thickness of 0.016 inch (0.41 mm).

The above ignition barrier is not required where the foam plastic insulation has been tested in accordance with Section R314.6.

R314.5.5 Foam-filled exterior doors. Foam-filled exterior doors are exempt from the requirements of Sections R314.3 and R314.4.

R314.5.6 Foam-filled garage doors. Foam-filled garage doors in attached or detached garages are exempt from the requirements of Sections R314.3 and R314.4.

R314.5.7 Foam backer board. The thermal barrier specified in Section R314.4 is not required where siding backer board foam plastic insulation has a maximum thickness of 0.5 inch (12.7 mm) and a potential heat of not more than 2000 Btu per square foot (22 720 kJ/m²) when tested in accordance with NFPA 259 provided that:

- 1. The foam plastic insulation is separated from the interior of the building by not less than 2 inches (51 mm) of mineral fiber insulation or
- 2. The foam plastic insulation is installed over existing exterior wall finish in conjunction with re-siding or
- 3. The foam plastic insulation has been tested in accordance with Section R314.6.

R314.5.8 Re-siding. The thermal barrier specified in Section R314.4 is not required where the foam plastic insulation is installed over existing exterior wall finish in conjunction with re-siding provided the foam plastic has a maximum thickness of 0.5 inch (12.7 mm) and a potential heat of not more than 2000 Btu per square foot (22 720 kJ/m²) when tested in accordance with NFPA 259.

R314.5.9 Interior trim. The thermal barrier specified in Section R314.4 is not required for exposed foam plastic interior trim, provided all of the following are met:

- 1. The minimum density is 20 pounds per cubic foot (320 kg/m³).
- 2. The maximum thickness of the trim is 0.5 inch (12.7 mm) and the maximum width is 8 inches (204 mm).
- 3. The interior trim shall not constitute more than 10 percent of the aggregate wall and ceiling area of any room or space.
- 4. The flame spread index does not exceed 75 when tested per ASTM E 84. The smoke-developed index is not limited.

R314.5.10 Interior finish. Foam plastics shall be permitted as interior finish where approved in accordance with

R314.6. Foam plastics that are used as interior finish shall also meet the flame spread and smoke-developed requirements of Section R315.

R314.5.11 Sill plates and headers. Foam plastic shall be permitted to be spray applied to a sill plate and header without the thermal barrier specified in Section R314.4 subject to all of the following:

- 1. The maximum thickness of the foam plastic shall be $3^{1}/_{4}$ inches (83 mm).
- 2. The density of the foam plastic shall be in the range of 1.5 to 2.0 pounds per cubic foot (24 to 32 kg/m³).
- 3. The foam plastic shall have a flame spread index of 25 or less and an accompanying smoke developed index of 450 or less when tested in accordance with ASTM E 84.

R314.5.12 Sheathing. Foam plastic insulation used as sheathing shall comply with Section R314.3 and Section R314.4. Where the foam plastic sheathing is exposed to the attic space at a gable or kneewall, the provisions of Section R314.5.3 shall apply.

R314.6 Specific approval. Foam plastic not meeting the requirements of Sections R314.3 through R314.5 shall be specifically approved on the basis of one of the following approved tests: NFPA 286 with the acceptance criteria of Section R315.4, FM4880, UL 1040 or UL 1715, or fire tests related to actual end-use configurations. The specific approval shall be based on the actual end use configuration and shall be performed on the finished foam plastic assembly in the maximum thickness intended for use. Assemblies tested shall include seams, joints and other typical details used in the installation of the assembly and shall be tested in the manner intended for use.

R314.7 Termite damage. The use of foam plastics in areas of "very heavy" termite infestation probability shall be in accordance with Section R320.4.

SECTION R315 FLAME SPREAD AND SMOKE DENSITY

R315.1 Wall and ceiling. Wall and ceiling finishes shall have a flame-spread classification of not greater than 200.

Exception: Flame-spread requirements for finishes shall not apply to trim defined as picture molds, chair rails, baseboards and handrails; to doors and windows or their frames; or to materials that are less than 1/28 inch (0.91 mm) in thickness cemented to the surface of walls or ceilings if these materials have a flame-spread characteristic no greater than paper of this thickness cemented to a noncombustible backing.

R315.2 Smoke-developed index. Wall and ceiling finishes shall have a smoke-developed index of not greater than 450.

R315.3 Testing. Tests shall be made in accordance with ASTM E 84.

R315.4 Alternate test method. As an alternate to having a flame-spread classification of not greater than 200 and a smoke developed index of not greater than 450 when tested in accordance with ASTM E 84, wall and ceiling finishes, other than textiles, shall be permitted to be tested in accordance with

NFPA 286. Materials tested in accordance with NFPA 286 shall meet the following criteria:

During the 40 kW exposure, the interior finish shall comply with Item 1. During the 160 kW exposure, the interior finish shall comply with Item 2. During the entire test, the interior finish shall comply with Item 3.

- 1. During the 40 kW exposure, flames shall not spread to the ceiling.
- 2. During the 160 kW exposure, the interior finish shall comply with the following:
 - 2.1. Flame shall not spread to the outer extremity of the sample on any wall or ceiling.
 - 2.2. Flashover, as defined in NFPA 286, shall not occur.
- 3. The total smoke released throughout the NFPA 286 test shall not exceed 1,000 m^2 .

SECTION R316 INSULATION

R316.1 Insulation. Insulation materials, including facings, such as vapor retarders or vapor permeable membranes installed within floor-ceiling assemblies, roof-ceiling assemblies, wall assemblies, crawl spaces and attics shall have a flame-spread index not to exceed 25 with an accompanying smoke-developed index not to exceed 450 when tested in accordance with ASTM E 84.

Exceptions:

- 1. When such materials are installed in concealed spaces, the flame-spread and smoke-developed limitations do not apply to the facings, provided that the facing is installed in substantial contact with the unexposed surface of the ceiling, floor or wall finish.
- 2. Cellulose loose-fill insulation, which is not spray applied, complying with the requirements of Section R316.3, shall only be required to meet the smoke-developed index of not more than 450.

R316.2 Loose-fill insulation. Loose-fill insulation materials that cannot be mounted in the ASTM E 84 apparatus without a screen or artificial supports shall comply with the flame spread and smoke-developed limits of Sections R316.1 and R316.4 when tested in accordance with CAN/ULC S102.2.

Exception: Cellulose loose-fill insulation shall not be required to comply with the flame spread index requirement of CAN/ULC S102.2, provided such insulation complies with the requirements of Section R316.3.

R316.3 Cellulose loose-fill insulation. Cellulose loose-fill insulation shall comply with CPSC 16 CFR, Parts 1209 and 1404. Each package of such insulating material shall be clearly labeled in accordance with CPSC 16 CFR, Parts 1209 and 1404.

R316.4 Exposed attic insulation. All exposed insulation materials installed on attic floors shall have a critical radiant flux not less than 0.12 watt per square centimeter.

R316.5 Testing. Tests for critical radiant flux shall be made in accordance with ASTM E 970.

SECTION R317 DWELLING UNIT SEPARATION

R317.1 Two-family dwellings. Dwelling units in two-family dwellings shall be separated from each other by wall and/or floor assemblies having not less than a 1-hour fire-resistance rating when tested in accordance with ASTM E 119. Fire-resistance-rated floor-ceiling and wall assemblies shall extend to and be tight against the underside of the roof sheathing. Dwelling unit separation wall assemblies, which are constructed on a lot line, shall be constructed as required in Section R317.1 for townhouses.

Exceptions:

- 1. A fire-resistance rating of ¹/₂ hour shall be permitted in buildings located entirely on the same lot and equipped throughout with an automatic sprinkler system installed in accordance with NFPA 13.
- 2. For two-family dwellings located on the same lot, wall assemblies need not extend through attic spaces when the ceiling is protected by not less than $5/_8$ -inch (15.9 mm) Type X gypsum board and an attic draft stop constructed as specified in Section R502.12.1 is provided above and along the wall assembly separating the dwellings. The structural framing supporting the ceiling shall also be protected by not less than $1/_2$ -inch (12.7 mm) gypsum board or equivalent.

R317.1.1 Supporting construction. When floor assemblies are required to be fire-resistance-rated by Section R317.1, the supporting construction of such assemblies shall have an equal or greater fire-resistive rating.

R317.2 Townhouses. Each townhouse shall be considered a separate building and shall be separated by fire-resistance-rated wall assemblies meeting the requirements of Section R302 for exterior walls.

Exception: A common 2-hour fire-resistance-rated wall is permitted for townhouses if such walls do not contain plumbing or mechanical equipment, ducts or vents in the cavity of the common wall. Electrical installations shall be installed in accordance with Chapters 33 through 42. Penetrations of electrical outlet boxes shall be in accordance with Section R317.3.

R317.2.1 Continuity. The fire-resistance-rated wall or assembly separating townhouses shall be continuous from the foundation to the underside of the roof sheathing, deck or slab. The fire-resistance rating shall extend the full length of the wall or assembly, including wall extensions through and separating attached enclosed accessory structures.

R317.2.2 Parapets. Parapets constructed in accordance with Section R317.2.3 shall be constructed for townhouses as an extension of exterior walls or common walls in accordance with the following:

1. Where roof surfaces adjacent to the wall or walls are at the same elevation, the parapet shall extend not

less than 30 inches (762 mm) above the roof surfaces.

2. Where roof surfaces adjacent to the wall or walls are at different elevations and the higher roof is not more than 30 inches (762 mm) above the lower roof, the parapet shall extend not less than 30 inches (762 mm) above the lower roof surface.

Exception: A parapet is not required in the two cases above when the roof is covered with a minimum class C roof covering, and the roof decking or sheathing is of noncombustible materials or approved fire-retardant-treated wood for a distance of 4 feet (1219 mm) on each side of the wall or walls, or one layer of $\frac{5}{8}$ -inch (15.9 mm) Type X gypsum board is installed directly beneath the roof decking or sheathing, supported by a minimum of nominal 2-inch (51 mm) ledgers attached to the sides of the roof framing members, for a minimum distance of 4 feet (1220 mm) on each side of the wall or walls.

3. A parapet is not required where roof surfaces adjacent to the wall or walls are at different elevations and the higher roof is more than 30 inches (762 mm) above the lower roof. The common wall construction from the lower roof to the underside of the higher roof deck shall have not less than a 1-hour fire-resistence rating. The wall shall be rated for exposure from both sides.

R317.2.3 Parapet construction. Parapets shall have the same fire-resistance rating as that required for the supporting wall or walls. On any side adjacent to a roof surface, the parapet shall have noncombustible faces for the uppermost 18 inches (457 mm), to include counterflashing and coping materials. Where the roof slopes toward a parapet at slopes greater than two units vertical in 12 units horizontal (16.7-percent slope), the parapet shall extend to the same height as any portion of the roof within a distance of 3 feet (914 mm), but in no case shall the height be less than 30 inches (762 mm).

R317.2.4 Structural independence. Each individual townhouse shall be structurally independent.

Exceptions:

- 1. Foundations supporting exterior walls or common walls.
- 2. Structural roof and wall sheathing from each unit may fasten to the common wall framing.
- 3. Nonstructural wall coverings.
- 4. Flashing at termination of roof covering over common wall.
- 5. Townhouses separated by a common 2-hour fire-resistance-rated wall as provided in Section R317.2.

R317.3 Rated penetrations. Penetrations of wall or floor/ceiling assemblies required to be fire-resistance rated in accordance with Section R317.1 or R317.2 shall be protected in accordance with this section.

R317.3.1 Through penetrations. Through penetrations of fire-resistance-rated wall or floor assemblies shall comply with Section R317.3.1.1 or R317.3.1.2.

Exception: Where the penetrating items are steel, ferrous or copper pipes, tubes or conduits, the annular space shall be protected as follows:

- 1. In concrete or masonry wall or floor assemblies where the penetrating item is a maximum 6 inches (152 mm) nominal diameter and the area of the opening through the wall does not exceed 144 square inches (92 900 mm²), concrete, grout or mortar is permitted where installed to the full thickness of the wall or floor assembly or the thickness required to maintain the fire-resistance rating.
- 2. The material used to fill the annular space shall prevent the passage of flame and hot gases sufficient to ignite cotton waste where subjected to ASTM E 119 time temperature fire conditions under a minimum positive pressure differential of 0.01 inch of water (3 Pa) at the location of the penetration for the time period equivalent to the fire resistance rating of the construction penetrated.

R317.3.1.1 Fire-resistance-rated assembly. Penetrations shall be installed as tested in the approved fire-resistance-rated assembly.

R317.3.1.2 Penetration firestop system. Penetrations shall be protected by an approved penetration firestop system installed as tested in accordance with ASTM E 814 or UL 1479, with a minimum positive pressure differential of 0.01 inch of water (3 Pa) and shall have an F rating of not less than the required fire-resistance rating of the wall or floor/ceiling assembly penetrated.

R317.3.2 Membrane penetrations. Membrane penetrations shall comply with Section R317.3.1. Where walls are required to have a fire-resistance rating, recessed fixtures shall be so installed such that the required fire resistance will not be reduced.

Exceptions:

I

- 1. Membrane penetrations of maximum 2-hour fire-resistance-rated walls and partitions by steel electrical boxes that do not exceed 16 square inches (0.0103 m^2) in area provided the aggregate area of the openings through the membrane does not exceed 100 square inches (0.0645 m^2) in any 100 square feet (9.29 m^2) of wall area. The annular space between the wall membrane and the box shall not exceed $\frac{1}{8}$ inch (3.1 mm). Such boxes on opposite sides of the wall shall be separated as follows:
 - 1.1. By a horizontal distance of not less than 24 inches (610 mm) except at walls or partitions constructed using parallel rows of studs or staggered studs;
 - 1.2. By a horizontal distance of not less than the depth of the wall cavity when the wall cavity is filled with cellulose loose-fill, rockwool or slag mineral wool insulation;

- 1.3. By solid fire blocking in accordance with Section R602.8.1;
- 1.4. By protecting both boxes with listed putty pads; or
- 1.5. By other listed materials and methods.
- 2. Membrane penetrations by listed electrical boxes of any materials provided the boxes have been tested for use in fire-resistance-rated assemblies and are installed in accordance with the instructions included in the listing. The annular space between the wall membrane and the box shall not exceed $\frac{1}{8}$ inch (3.1 mm) unless listed otherwise. Such boxes on opposite sides of the wall shall be separated as follows:
 - 2.1. By a horizontal distance of not less than 24 inches (610 mm) except at walls or partitions constructed using parallel rows of studs or staggered studs;
 - 2.2. By solid fire blocking in accordance with Section R602.8;
 - 2.3. By protecting both boxes with listed putty pads; or
 - 2.4. By other listed materials and methods.
- 3. The annular space created by the penetration of a fire sprinkler provided it is covered by a metal escutcheon plate.

SECTION R318 MOISTURE VAPOR RETARDERS

R318.1 Moisture control. In all framed walls, floors and roof/ceilings comprising elements of the building thermal envelope, a vapor retarder shall be installed on the warm-in-winter side of the insulation.

Exceptions:

- 1. In construction where moisture or freezing will not damage the materials.
- 2. Where the framed cavity or space is ventilated to allow moisture to escape.
- 3. In counties identified as in climate zones 1 through 4 | in Table N1101.2.

SECTION R319 PROTECTION AGAINST DECAY

R319.1 Location required. Protection from decay shall be provided in the following locations by the use of naturally durable wood or wood that is preservative treated in accordance with AWPA U1 for the species, product, preservative and end use. Preservatives shall be listed in Section 4 of AWPA U1.

1. Wood joists or the bottom of a wood structural floor when closer than 18 inches (457 mm) or wood girders when closer than 12 inches (305 mm) to the exposed ground in crawl spaces or unexcavated area located within the periphery of the building foundation.

- 2. All wood framing members that rest on concrete or masonry exterior foundation walls and are less than 8 inches (203 mm) from the exposed ground.
- 3. Sills and sleepers on a concrete or masonry slab that is in direct contact with the ground unless separated from such slab by an impervious moisture barrier.
- 4. The ends of wood girders entering exterior masonry or concrete walls having clearances of less than 0.5 inch (12.7 mm) on tops, sides and ends.
- 5. Wood siding, sheathing and wall framing on the exterior of a building having a clearance of less than 6 inches (152 mm) from the ground.
- 6. Wood structural members supporting moisture-permeable floors or roofs that are exposed to the weather, such as concrete or masonry slabs, unless separated from such floors or roofs by an impervious moisture barrier.
- 7. Wood furring strips or other wood framing members attached directly to the interior of exterior masonry walls or concrete walls below grade except where an approved vapor retarder is applied between the wall and the furring strips or framing members.

R319.1.1 Field treatment. Field-cut ends, notches and drilled holes of preservative-treated wood shall be treated in the field in accordance with AWPA M4.

R319.1.2 Ground contact. All wood in contact with the ground, embedded in concrete in direct contact with the ground or embedded in concrete exposed to the weather that supports permanent structures intended for human occupancy shall be approved pressure-preservative-treated wood suitable for ground contact use, except untreated wood may be used where entirely below groundwater level or continuously submerged in fresh water.

R319.1.3 Geographical areas. In geographical areas where experience has demonstrated a specific need, approved naturally durable or pressure-preservative-treated wood shall be used for those portions of wood members that form the structural supports of buildings, balconies, porches or similar permanent building appurtenances when those members are exposed to the weather without adequate protection from a roof, eave, overhang or other covering that would prevent moisture or water accumulation on the surface or at joints between members. Depending on local experience, such members may include:

- 1. Horizontal members such as girders, joists and decking.
- 2. Vertical members such as posts, poles and columns.
- 3. Both horizontal and vertical members.

R319.1.4 Wood columns. Wood columns shall be approved wood of natural decay resistance or approved pressure-pre-servative-treated wood.

Exceptions:

1. Columns exposed to the weather or in basements when supported by concrete piers or metal pedes-

tals projecting 1 inch (25.4 mm) above a concrete floor or 6 inches (152 mm) above exposed earth and the earth is covered by an approved impervious moisture barrier.

2. Columns in enclosed crawl spaces or unexcavated areas located within the periphery of the building when supported by a concrete pier or metal pedestal at a height more than 8 inches (203mm) from exposed earth and the earth is covered by an impervious moisture barrier.

R319.1.5 Exposed glued-laminated timbers. The portions of glued-laminated timbers that form the structural supports of a building or other structure and are exposed to weather and not properly protected by a roof, eave or similar covering shall be pressure treated with preservative, or be manufactured from naturally durable or preservative-treated wood.

R319.2 Quality mark. Lumber and plywood required to be pressure-preservative-treated in accordance with Section R319.1 shall bear the quality mark of an approved inspection agency that maintains continuing supervision, testing and inspection over the quality of the product and that has been approved by an accreditation body that complies with the requirements of the American Lumber Standard Committee treated wood program.

R319.2.1 Required information. The required quality mark on each piece of pressure-preservative-treated lumber or plywood shall contain the following information:

- 1. Identification of the treating plant.
- 2. Type of preservative.
- 3. The minimum preservative retention.
- 4. End use for which the product was treated.
- 5. Standard to which the product was treated.
- 6. Identity of the approved inspection agency.
- 7. The designation "Dry," if applicable.

Exception: Quality marks on lumber less than 1 inch (25.4 mm) nominal thickness, or lumber less than nominal 1 inch by 5 inches (25.4 mm by 127 mm) or 2 inches by 4 inches (51 mm by 102 mm) or lumber 36 inches (914 mm) or less in length shall be applied by stamping the faces of exterior pieces or by end labeling not less than 25 percent of the pieces of a bundled unit.

R319.3 Fasteners. Fasteners for pressure-preservative and fire-retardant-treated wood shall be of hot-dipped zinc-coated galvanized steel, stainless steel, silicon bronze or copper. The coating weights for zinc-coated fasteners shall be in accordance with ASTM A 153.

Exceptions:

- 1. One-half-inch (12.7 mm) diameter or larger steel bolts.
- 2. Fasteners other than nails and timber rivets shall be permitted to be of mechanically deposited zinccoated steel with coating weights in accordance with ASTM B 695, Class 55, minimum.

L

SECTION R320 PROTECTION AGAINST SUBTERRANEAN TERMITES

R320.1 Subterranean termite control methods. In areas subject to damage from termites as indicated by Table R301.2(1), methods of protection shall be one of the following methods or a combination of these methods:

- 1. Chemical termiticide treatment, as provided in Section R320.2.
- 2. Termite baiting system installed and maintained according to the label.
- 3. Pressure-preservative-treated wood in accordance with the AWPA standards listed in Section R319.1.
- 4. Naturally termite-resistant wood as provided in Section R320.3.
- 5. Physical barriers as provided in Section R320.4.

R320.1.1 Quality mark. Lumber and plywood required to be pressure-preservative-treated in accordance with Section R320.1 shall bear the quality mark of an approved inspection agency which maintains continuing supervision, testing and inspection over the quality of the product and which has been approved by an accreditation body which complies with the requirements of the American Lumber Standard Committee treated wood program.

R320.1.2 Field treatment. Field-cut ends, notches, and drilled holes of pressure-preservative-treated wood shall be retreated in the field in accordance with AWPA M4.

R320.2 Chemical termiticide treatment. Chemical termiticide treatment shall include soil treatment and/or field applied wood treatment. The concentration, rate of application and method of treatment of the chemical termiticide shall be in strict accordance with the termiticide label.

R320.3 Naturally resistant wood. Heartwood of redwood and eastern red cedar shall be considered termite resistant.

R320.4 Barriers. Approved physical barriers, such as metal or plastic sheeting or collars specifically designed for termite prevention, shall be installed in a manner to prevent termites from entering the structure. Shields placed on top of an exterior foundation wall are permitted to be used only if in combination with another method of protection.

R320.5 Foam plastic protection. In areas where the probability of termite infestation is "very heavy" as indicated in Figure R301.2(6), extruded and expanded polystyrene, polyiso-cyanurate and other foam plastics shall not be installed on the exterior face or under interior or exterior foundation walls or slab foundations located below grade. The clearance between foam plastics installed above grade and exposed earth shall be at least 6 inches (152 mm).

Exceptions:

- 1. Buildings where the structural members of walls, floors, ceilings and roofs are entirely of noncombustible materials or pressure-preservative-treated wood.
- 2. When in addition to the requirements of Section R320.1, an approved method of protecting the foam

plastic and structure from subterranean termite damage is used.

3. On the interior side of basement walls.

SECTION R321 SITE ADDRESS

R321.1 Premises identification. Approved numbers or addresses shall be provided for all new buildings in such a position as to be plainly visible and legible from the street or road fronting the property.

SECTION R322 ACCESSIBILITY

R322.1 Scope. Where there are four or more dwelling units or sleeping units in a single structure, the provisions of Chapter 11 of the *International Building Code* for Group R-3 shall apply.

SECTION R323 ELEVATORS AND PLATFORM LIFTS

R323.1 Elevators. Where provided, passenger elevators, limited-use/limited-application elevators or private residence elevators shall comply with ASME A17.1.

R323.2 Platform lifts. Where provided, platform lifts shall comply with ASME A18.1.

R323.3 Accessibility. Elevators or platform lifts that are part of an accessible route required by Chapter 11 of the *International Building Code*, shall comply with ICC A117.1.

SECTION R324 FLOOD-RESISTANT CONSTRUCTION

R324.1 General. Buildings and structures constructed in whole or in part in flood hazard areas (including A or V Zones) as established in Table R301.2(1) shall be designed and constructed in accordance with the provisions contained in this section.

Exception: Buildings and structures located in whole or in part in identified floodways as established in Table R301.2(1) shall be designed and constructed as stipulated in the *International Building Code*.

R324.1.1 Structural systems. All structural systems of all buildings and structures shall be designed, connected and anchored to resist flotation, collapse or permanent lateral movement due to structural loads and stresses from flooding equal to the design flood elevation.

R324.1.2 Flood-resistant construction. All buildings and structures erected in areas prone to flooding shall be constructed by methods and practices that minimize flood damage.

R324.1.3 Establishing the design flood elevation. The design flood elevation shall be used to define areas prone to flooding, and shall describe, at a minimum, the base flood elevation at the depth of peak elevation of flooding (including wave height) which has a 1 percent (100-year flood) or

greater chance of being equaled or exceeded in any given year.

R324.1.3.1 Determination of design flood elevations. If design flood elevations are not specified, the building official is authorized to require the applicant to:

- 1. Obtain and reasonably use data available from a federal, state or other source; or
- 2. Determine the design flood elevation in accordance with accepted hydrologic and hydraulic engineering practices used to define special flood hazard areas. Determinations shall be undertaken by a registered design professional who shall document that the technical methods used reflect currently accepted engineering practice. Studies, analyses and computations shall be submitted in sufficient detail to allow thorough review and approval.

R324.1.3.2 Determination of impacts. In riverine flood hazard areas where design flood elevations are specified but floodways have not been designated, the applicant shall demonstrate that the effect of the proposed buildings and structures on design flood elevations, including fill, when combined with all other existing and anticipated flood hazard area encroachments, will not increase the design flood elevation more than 1 foot (305 mm) at any point within the jurisdiction.

R324.1.4 Lowest floor. The lowest floor shall be the floor of the lowest enclosed area, including basement, but excluding any unfinished flood-resistant enclosure that is useable solely for vehicle parking, building access or limited storage provided that such enclosure is not built so as to render the building or structure in violation of this section.

R324.1.5 Protection of mechanical and electrical systems. Electrical systems, equipment and components, and heating, ventilating, air conditioning and plumbing appliances, plumbing fixtures, duct systems, and other service equipment shall be located at or above the design flood elevation. If replaced as part of a substantial improvement, electrical systems, equipment and components, and heating, ventilating, air conditioning, and plumbing appliances, plumbing fixtures, duct systems, and other service equipment shall meet the requirements of this section. Systems, fixtures, and equipment and components shall not be mounted on or penetrate through walls intended to break away under flood loads.

Exception: Electrical systems, equipment and components, and heating, ventilating, air conditioning and plumbing appliances, plumbing fixtures, duct systems, and other service equipment are permitted to be located below the design flood elevation provided that they are designed and installed to prevent water from entering or accumulating within the components and to resist hydrostatic and hydrodynamic loads and stresses, including the effects of buoyancy, during the occurrence of flooding to the design flood elevation in compliance with the flood-resistant construction requirements of the *International Building Code*. Electrical wiring systems are permitted to be located below the design flood elevation

provided they conform to the provisions of the electrical part of this code for wet locations.

R324.1.6 Protection of water supply and sanitary sewage systems. New and replacement water supply systems shall be designed to minimize or eliminate infiltration of flood waters into the systems in accordance with the plumbing provisions of this code. New and replacement sanitary sewage systems shall be designed to minimize or eliminate infiltration of floodwaters into systems and discharges from systems into floodwaters in accordance with the plumbing provisions of this code and Chapter 3 of the *International Private Sewage Disposal Code*.

R324.1.7 Flood-resistant materials. Building materials used below the design flood elevation shall comply with the following:

- 1. All wood, including floor sheathing, shall be pressure-preservative-treated in accordance with AWPA U1 for the species, product, preservative and end use or be the decay-resistant heartwood of redwood, black locust or cedars. Preservatives shall be listed in Section 4 of AWPA U1.
- 2. Materials and installation methods used for flooring and interior and exterior walls and wall coverings shall conform to the provisions of FEMA/FIA-TB.

R324.1.8 Manufactured housing. New or replacement manufactured housing shall be elevated in accordance with Section R324.2 and the anchor and tie-down requirements of Sections AE604 and AE605 of Appendix E shall apply. The foundation and anchorage of manufactured housing to be located in identified flood ways as established in Table R301.2(1) shall be designed and constructed in accordance with the applicable provisions in the *International Building Code*.

R324.1.9 As-built elevation documentation. A registered design professional shall prepare and seal documentation of the elevations specified in Section R324.2 or R324.3.

R324.2 Flood hazard areas (including A Zones). Areas that have been determined to be prone to flooding but not subject to high velocity wave action shall be designated as flood hazard areas. All buildings and structures constructed in whole or in part in flood hazard areas shall be designed and constructed in accordance with Sections R324.2.1 and R324.2.3.

R324.2.1 Elevation requirements.

- 1. Buildings and structures shall have the lowest floors elevated to or above the design flood elevation.
- 2. In areas of shallow flooding (AO Zones), buildings and structures shall have the lowest floor (including basement) elevated at least as high above the highest adjacent grade as the depth number specified in feet (mm) on the FIRM, or at least 2 feet (610 mm) if a depth number is not specified.
- 3. Basement floors that are below grade on all sides shall be elevated to or above the design flood elevation.

Exception: Enclosed areas below the design flood elevation, including basements whose floors are not below

grade on all sides, shall meet the requirements of Section R324.2.2.

R324.2.2 Enclosed area below design flood elevation. Enclosed areas, including crawl spaces, that are below the design flood elevation shall:

- 1. Be used solely for parking of vehicles, building access or storage.
- 2. Be provided with flood openings that meet the following criteria:
 - 2.1. There shall be a minimum of two openings on different sides of each enclosed area; if a building has more than one enclosed area below the design flood elevation, each area shall have openings on exterior walls.
 - 2.2. The total net area of all openings shall be at least 1 square inch (645 mm²) for each square foot (0.093 m²) of enclosed area, or the openings shall be designed and the construction documents shall include a statement that the design and installation will provide for equalization of hydrostatic flood forces on exterior walls by allowing for the automatic entry and exit of floodwaters.
 - 2.3. The bottom of each opening shall be 1 foot (305 mm) or less above the adjacent ground level.
 - 2.4. Openings shall be at least 3 inches (76 mm) in diameter.
 - 2.5. Any louvers, screens or other opening covers shall allow the automatic flow of floodwaters into and out of the enclosed area.
 - 2.6. Openings installed in doors and windows, that meet requirements 2.1 through 2.5, are acceptable; however, doors and windows without installed openings do not meet the requirements of this section.

R324.2.3 Foundation design and construction. Foundation walls for all buildings and structures erected in flood hazard areas shall meet the requirements of Chapter 4.

Exception: Unless designed in accordance with Section R404:

- 1. The unsupported height of 6-inch (152 mm) plain masonry walls shall be no more than 3 feet (914 mm).
- 2. The unsupported height of 8-inch (203 mm) plain masonry walls shall be no more than 4 feet (1219 mm).
- 3. The unsupported height of 8-inch (203 mm) reinforced masonry walls shall be no more than 8 feet (2438 mm).

For the purpose of this exception, unsupported height is the distance from the finished grade of the under-floor space and the top of the wall. **R324.3 Coastal high-hazard areas (including V Zones).** Areas that have been determined to be subject to wave heights in excess of 3 feet (914 mm) or subject to high-velocity wave action or wave-induced erosion shall be designated as coastal high-hazard areas. Buildings and structures constructed in whole or in part in coastal high-hazard areas shall be designated and constructed in accordance with Sections R324.3.1 through R324.3.6.

R324.3.1 Location and site preparation.

- 1. Buildings and structures shall be located landward of the reach of mean high tide.
- 2. For any alteration of sand dunes and mangrove stands the building official shall require submission of an engineering analysis which demonstrates that the proposed alteration will not increase the potential for flood damage.

R324.3.2 Elevation requirements.

- 1. All buildings and structures erected within coastal high hazard areas shall be elevated so that the lowest portion of all structural members supporting the lowest floor, with the exception of mat or raft foundations, piling, pile caps, columns, grade beams and bracing, is located at or above the design flood elevation.
- 2. Basement floors that are below grade on all sides are prohibited.
- 3. The use of fill for structural support is prohibited.
- 4. The placement of fill beneath buildings and structures is prohibited.

Exception: Walls and partitions enclosing areas below the design flood elevation shall meet the requirements of Sections R324.3.4 and R324.3.5.

R324.3.3 Foundations. Buildings and structures erected in coastal high-hazard areas shall be supported on pilings or columns and shall be adequately anchored to those pilings or columns. Pilings shall have adequate soil penetrations to resist the combined wave and wind loads (lateral and uplift). Water loading values used shall be those associated with the design flood. Wind loading values shall be those required by this code. Pile embedment shall include consideration of decreased resistance capacity caused by scour of soil strata surrounding the piling. Pile systems design and installation shall be certified in accordance with Section R324.3.6. Mat, raft or other foundations that support columns shall not be permitted where soil investigations that are required in accordance with Section R401.4 indicate that soil material under the mat, raft or other foundation is subject to scour or erosion from wave-velocity flow conditions. Slabs, pools, pool decks and walkways shall be located and constructed to be structurally independent of buildings and structures and their foundations to prevent transfer of flood loads to the buildings and structures during conditions of flooding, scour or erosion from wave-velocity flow conditions, unless the buildings and structures and their foundation are designed to resist the additional flood load.

R324.3.4 Walls below design flood elevation. Walls and partitions are permitted below the elevated floor, provided that such walls and partitions are not part of the structural support of the building or structure and:

- 1. Electrical, mechanical, and plumbing system components are not to be mounted on or penetrate through walls that are designed to break away under flood loads; and
- 2. Are constructed with insect screening or open lattice; or
- 3. Are designed to break away or collapse without causing collapse, displacement or other structural damage to the elevated portion of the building or supporting foundation system. Such walls, framing and connections shall have a design safe loading resistance of not less than 10 (479 Pa) and no more than 20 pounds per square foot (958 Pa); or
- 4. Where wind loading values of this code exceed 20 pounds per square foot (958 Pa), the construction documents shall include documentation prepared and sealed by a registered design professional that:
 - 4.1. The walls and partitions below the design flood elevation have been designed to collapse from a water load less than that which would occur during the design flood.
 - 4.2. The elevated portion of the building and supporting foundation system have been designed to withstand the effects of wind and flood loads acting simultaneously on all building components (structural and nonstructural). Water loading values used shall be those associated with the design flood. Wind loading values shall be those required by this code.

R324.3.5 Enclosed areas below design flood elevation. Enclosed areas below the design flood elevation shall be used solely for parking of vehicles, building access or storage.

R324.3.6 Construction documents. The construction documents shall include documentation that is prepared and sealed by a registered design professional that the design and methods of construction to be used meet the applicable criteria of this section.

SECTION R325 RADON-RESISTANT CONSTRUCTION

R325.1 Local enforcement of radon requirements. Following official action under Article 7 (Section 15.2-2280 et seq.) of Chapter 22 of Title 15.2 of the Code of Virginia by a locality in areas of high radon potential, as indicated by Zone 1 on the U.S. EPA Map of Radon Zones (IRC Figure AF101), such locality shall enforce the provisions contained in Appendix F.

Exception: Buildings or portions thereof with crawl space foundations which are ventilated to the exterior, shall not be required to provide radon-resistant construction.

SECTION R326 SWIMMING POOLS, SPAS AND HOT TUBS

R326.1 Use of Appendix G for swimming pools, spas and hot tubs. In addition to other applicable provisions of this code, swimming pools, spas and hot tubs shall comply with the provisions in Appendix G.

SECTION R327 PATIO COVERS

R327.1 Use of Appendix H for patio covers. Patio covers shall comply with the provisions in Appendix H.

SECTION R328 SOUND TRANSMISSION

R328.1 Sound transmission between dwelling units. Construction assemblies separating dwelling units shall provide airborne sound insulation as required in Appendix K.

R328.2 Airport noise attenuation. This section applies to the construction of the exterior envelope of detached one- and two-family dwellings and multiple single-family dwellings (townhouses) not more than three stories high with separate means or egress within airport noise zones when enforced by a locality pursuant to Section 15.2-2295 of the Code of Virginia. The exterior envelope of such structures shall comply with Section 1207.4 of the state amendments to the IBC.